首页> 外文OA文献 >Terahertz time domain spectroscopy (THz-TDS) for solid state analysis
【2h】

Terahertz time domain spectroscopy (THz-TDS) for solid state analysis

机译:用于固态分析的太赫兹时域光谱(THZ-TDS)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Terahertz time-domain spectroscopy (THz-TDS) probes inter-molecular interactions within solid materials. THz-TDS covers the spectral region of 0.1-3 THz or 5-100 cm-1 which is a low energy and non-ionizing region of the electromagnetic spectrum. Spectra are collected in a time-domain configuration where a coherent broad-band pulse of THz electromagnetic radiation passes through a sample and gated-detection is used to monitor the electric-field vector of the transmitted THz radiation. This methodology permits a direct measure of the time-of-flight of THz radiation through the sample and, as a result, provides a direct means to measure interactions between the propagating THz electromagnetic wave and the sample material. Time of interaction between the THz wave and the sample gives a measure of the optical and electronic properties of the material and attenuation of the propagating THz wave gives information pertaining to both absorption and scattering properties of the sample. The analytical utility of these features of THz-TDS is explored in this dissertation.Cocrystals represent a novel class of supra-molecular materials composed of two or more inorganic or organic units (molecules, ions or atoms) configured within a crystalline structure. The components interact by hydrogen bonding, π-π stacking or weak Vander Waals interactions to create ordered structures with unique chemical and physical properties. The potential of such unique properties has spurred efforts to design cocrystal materials specifically direct toward long-standing problems within the fields of pharmaceutics and electronics. Research findings presented in this dissertation demonstrate the potential of THz-TDS as an analytical tool for characterizing fundamental chemical and physical properties of cocrystal materials, thereby providing the means to advance the rational design of cocrystal materials for selected applications.The analytical utility of THz-TDS is established through a series of transmission measurements through samples composed of the cocrystal of interest embedded within a polymeric matrix. Both high-density polyethylene and polytetrafluoroethylene are used to form compressed pellets containing cocrystals for analysis. Initial efforts demonstrate quantitation of cocrystalline materials within such pellets through a Beer-Lambert relationship where the magnitude of selected absorption bands is related to the amount of a cocrystal within a given pellet. In addition, time-domain THz spectra are used to determine the refractive index of sample pellets and this information is shown to provide dielectric spectra at THz frequencies for the cocrystal components of the sample pellets. The so-called LLL model is applied to generate accurate dielectric information for the cocrystal component of these pellets on the basis of volume fraction. The ability to measure the polarizability of cocrystals is also demonstrated by applying the Clausius-Mossitti relationship between polarizability and dielectric spectra.The utility of the established analytical features of THz-TDS is demonstrated in a series of preliminary experiments designed to: 1) follow the single-crystal-single-crystal (SCSC)[2+2] photodimerization reaction of 2(5-cyano-resorcinol)∙2(trans-1,2-bis(4-pyridyl)ethylene) to produce rctt-tetrakis(4-pyridyl) cyclobutane; 2) establish the relationship between polarizability and hardness for a series of cocrystals; and 3) determine differences in polarization of cocrystals produced by different synthetic methods. Results support the following conclusions: 1)kinetics of SCSC reactions can be followed through dielectric measurements, but concentration measurements are confounded by unique spectroscopic features observed for partially reacted cocrystals; 2) polarizability at THz frequencies are inversely related to hardness of the tested cocrystals; 3) differences are observed in the polarizability of macro versus nano size cocrystals; and 4) polarizability of these cocrystals is independent of synthesis method.
机译:Terahertz时域光谱(THz-TDS)探测固体材料内的分子间相互作用。太赫兹时域覆盖为0.1-3THz或5-100 -1的光谱区它是电磁波谱的低能量和非电离区域。其中太赫兹的电磁辐射的相干宽带脉冲通过一个样品和选通检测用于监视所传送的THz辐射的电场矢量的光谱被收集在一个时域结构。这种方法允许的时间飞行通过样品THz辐射的直接量度,并且作为结果,提供了一种直接的手段来测量传播的THz电磁波和样品材料之间的相互作用。的THz波与样品之间的相互作用的时间给出了传播THz波的材料和衰减的光学和电子特性的量度给出关于吸收和散射样品的性质的信息。在此dissertation.Cocrystals代表了一类新型的结晶结构内配置的两个或更多的无机或有机单位(分子,离子或原子)组成的超分子材料中的太赫兹TDS这些特征的分析工具进行了探索。通过氢键,π-π堆积或弱范德华相互作用交互的组件来创建有序具有独特的化学和物理特性的结构。这种独特的性能潜力刺激了努力,设计共晶材料,特别是对长期存在的制药和电子领域内的问题直接。在本文呈现的研究发现证明的THz-TDS的电位作为用于表征基本化学和共晶材料的物理性能,从而提供的装置来推进共晶材料的合理设计为THz-的选定applications.The分析效用的分析工具TDS通过穿过嵌入在聚合物基质中感兴趣的共晶组成的样品的一系列透射测量的建立。无论是高密度聚乙烯和聚四氟乙烯用于包含用于分析共结晶形式压缩粒料。最初的努力通过比尔 - 朗伯关系,其中选择的吸收带的大小被给定的小球内相关的共晶的量表现出这样的粒料内共结晶态材料的定量。另外,时域太赫兹光谱被用来确定样品的粒料的折射率,并且该信息被示出为在THz频率用于样品粒料的共晶成分提供介电谱。所谓LLL模型应用于生成用于体积分数的基础上这些颗粒的共结晶组分准确的电介质的信息。测量共结晶的极化的能力也通过施加极化和太赫兹时域的建立的分析特征的介电spectra.The效用之间克劳修斯 - Mossitti关系是体现在一系列设计成初步实验表明:1)按照单晶单晶(SCSC)[2 + 2] 2 - (5-氰基 - 间苯二酚)∙2(反式1,2-双(4-吡啶基)乙烯),以产生rctt四光二聚反应(4吡啶基)环丁烷; 2)建立极化和硬度的一系列共结晶的之间的关系;和3)确定由不同的合成方法制备的共结晶的极化差异。结果支持以下结论:1)SCSC反应的动力学可以通过介电测量之后,但浓度测量是通过独特的光谱混淆观察到部分反应的共晶体的特征; 2)在极化THz频率成反比关系到所测试的共结晶的硬度; 3)区别将在宏与纳米尺寸的共结晶的极化观察到和4)这些共结晶的极化是独立的合成方法的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号