首页> 外文OA文献 >Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
【2h】

Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing

机译:改进动态模式分解及其在滚动轴承故障诊断中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To solve the intractable problems of optimal rank truncation threshold and dominant modes selection strategy of the standard dynamic mode decomposition (DMD), an improved DMD algorithm is introduced in this paper. Distinct from the conventional methods, a convex optimization framework is introduced by applying a parameterized non-convex penalty function to obtain the optimal rank truncation number. This method is inspirited by the performance that it is more perfectible than other rank truncation methods in inhibiting noise disturbance. A hierarchical and multiresolution application similar to the process of wavelet packet decomposition in modes selection is presented so as to improve the algorithm’s performance. With the modes selection strategy, the frequency spectrum of the reconstruction signal is more readable and interference-free. The improved DMD algorithm successfully extracts the fault characteristics of rolling bearing fault signals when it is utilized for mechanical signal feature extraction. Results demonstrated that the proposed method has good application prospects in denoising and fault feature extraction for mechanical signals.
机译:为了解决标准动态模式分解(DMD)的最佳排名截断阈值和主导模式选择策略的最佳排名截断阈值和主导模式的难以应答策略,本文介绍了一种改进的DMD算法。与传统方法不同,通过应用参数化的非凸损函数来获得最佳排名截断数来引入凸优化框架。通过在抑制噪声干扰的情况下,该方法的性能是比其他排名截断方法更完美的性能。提出了类似于模式选择中的小波分组分解过程的分层和多分辨率应用,以提高算法的性能。利用模式选择策略,重建信号的频谱更可读和无干扰。改进的DMD算法在利用机械信号特征提取时成功提取了滚动轴承故障信号的故障特性。结果表明,该方法具有良好的应用前景,用于机械信号的去噪和故障特征提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号