首页> 外文OA文献 >Confidence-based model validation for reliability assessment and its integration with reliability-based design optimization
【2h】

Confidence-based model validation for reliability assessment and its integration with reliability-based design optimization

机译:基于信心评估的模型验证及其与基于可靠性的设计优化的集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional reliability analysis methods assume that a simulation model is able to represent the real physics accurately. However, this assumption may not always hold as the simulation model could be biased due to simplifications and idealizations. Simulation models are approximate mathematical representations of real-world systems and thus cannot exactly imitate the real-world systems. The accuracy of a simulation model is especially critical when it is used for the reliability calculation. Therefore, a simulation model should be validated using prototype testing results for reliability analysis. However, in practical engineering situation, experimental output data for the purpose of model validation is limited due to the significant cost of a large number of physical testing. Thus, the model validation needs to be carried out to account for the uncertainty induced by insufficient experimental output data as well as the inherent variability existing in the physical system and hence in the experimental test results. Therefore, in this study, a confidence-based model validation method that captures the variability and the uncertainty, and that corrects model bias at a user-specified target confidence level, has been developed. Reliability assessment using the confidence-based model validation can provide conservative estimation of the reliability of a system with confidence when only insufficient experimental output data are available.Without confidence-based model validation, the designed product obtained using the conventional reliability-based design optimization (RBDO) optimum could either not satisfy the target reliability or be overly conservative. Therefore, simulation model validation is necessary to obtain a reliable optimum product using the RBDO process. In this study, the developed confidence-based model validation is integrated in the RBDO process to provide truly confident RBDO optimum design. The developed confidence-based model validation will provide a conservative RBDO optimum design at the target confidence level. However, it is challenging to obtain steady convergence in the RBDO process with confidence-based model validation because the feasible domain changes as the design moves (i.e., a moving-target problem). To resolve this issue, a practical optimization procedure, which terminates the RBDO process once the target reliability is satisfied, is proposed. In addition, the efficiency is achieved by carrying out deterministic design optimization (DDO) and RBDO without model validation, followed by RBDO with the confidence-based model validation. Numerical examples are presented to demonstrate that the proposed RBDO approach obtains a conservative and practical optimum design that satisfies the target reliability of designed product given a limited number of experimental output data.Thus far, while the simulation model might be biased, it is assumed that we have correct distribution models for input variables and parameters. However, in real practical applications, only limited numbers of test data are available (parameter uncertainty) for modeling input distributions of material properties, manufacturing tolerances, operational loads, etc. Also, as before, only a limited number of output test data is used. Therefore, a reliability needs to be estimated by considering parameter uncertainty as well as biased simulation model. Computational methods and a process are developed to obtain confidence-based reliability assessment. The insufficient input and output test data induce uncertainties in input distribution models and output distributions, respectively. These uncertainties, which arise from lack of knowledge – the insufficient test data, are different from the inherent input distributions and corresponding output variabilities, which are natural randomness of the physical system.
机译:传统的可靠性分析方法假设模拟模型能够准确地表示真实物理。然而,由于仿真模型可能由于简化和理想化而被偏置,因此这种假设可能并不总是保持。仿真模型是真实世界系统的数学表示,因此不能完全模仿真实世界。当它用于可靠性计算时,仿真模型的准确性尤为重要。因此,应使用原型测试结果进行仿真模型,以便可靠性分析。然而,在实际工程形势下,由于大量物理测试的显着成本,实验输出数据是有限的。因此,需要进行模型验证以考虑由实验性输出数据不足引起的不确定性以及物理系统中存在的固有变异,因此在实验测试结果中。因此,在本研究中,已经开发出捕获变异性和不确定性的基于置信的模型验证方法,并且已经开发出在用户指定的目标置信水平上纠正模型偏差。使用基于置信性的模型验证的可靠性评估可以提供保守估计系统的可靠性,当时只有足够的实验性输出数据,可以提供基于置信的模型验证,所以使用传统的基于可靠性的设计优化获得的设计产品( RBDO)最佳可以不满足目标可靠性或过于保守的。因此,使用RBDO过程获得仿真模型验证以获得可靠的最佳产品。在本研究中,开发的基于置信度的模型验证集成在RBDO过程中,以提供真正自信的RBDO优化设计。开发的基于置信模式验证将在目标置信水平提供保守的RBDO优化设计。然而,利用基于置信的模型验证获得RBDO过程中的稳定收敛是挑战,因为可行的域改变为设计移动(即,移动目标问题)。为了解决这个问题,提出了一旦满足目标可靠性,终止RBDO过程的实际优化过程。此外,通过执行确定性设计优化(DDO)和RBDO而没有模型验证的效率,然后是RBDO与基于置信的模型验证来实现的效率。提出了数值示例以证明所提出的RBDO方法获得了保守和实用的最佳设计,该设计满足设计产品的目标可靠性,给出了有限数量的实验输出数据。对于远远而言,仿真模型可能被偏置,因此假设我们有正确的输入变量和参数的分发模型。但是,在实际应用中,只有有限数量的测试数据(参数不确定性),用于建模材料属性的输入分布,制造公差,操作负载等。此外,如前所述,仅使用有限数量的输出测试数据。因此,通过考虑参数不确定性以及偏置仿真模型,需要估计可靠性。开发了计算方法和过程以获得基于置信度的可靠性评估。输入和输出测试数据不足,分别在输入分布模型和输出分布中引起不确定性。这些不确定因素来自缺乏知识 - 测试数据不足,与固有的输入分布和相应的输出变量不同,这是物理系统的自然随机性。

著录项

  • 作者

    Min-Yeong Moon;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号