首页> 外文OA文献 >Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites
【2h】

Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites

机译:短碳纤维增强聚合物:利用木质素到工程师潜在的基于资源的生物复合材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon fiber reinforced composites have exceptional potential to play a key role in the materials world of our future. However, their success undoubtedly depends on the extent they can contribute to advance a global sustainability objective. Utilizing polymers in these composites that can be potentially derived from biomasses would be certainly vital for next-generation manufacturing practices. Nevertheless, deep understanding and tailoring fiber-matrix interactions are crucial issues in order to design carbon fiber reinforced sustainable resource-based biocomposites. In this study, cellulose derivatives (cellulose propionate and cellulose acetate butyrate) are utilized as model polymer matrices that can be potentially fabricated from biomasses, and the mechanical properties of the prepared short carbon fiber reinforced composites are engineered by means of a functional biobased lignin coating on the fiber surface. Furthermore, polyamide 6 based composites are also prepared, the monomer of this polymer could be obtained using C6 sugars derived from lignocellulosic biomasses in the future (through 5-hydroxymethylfurfural). Lignin was successfully immobilized on the carbon fiber surface via an industrially scalable benign epoxidation reaction. The surface modification had a beneficial impact on the mechanical properties of cellulose propionate and polyamide 6 composites. Furthermore, our results also revealed that cellulose-based matrices are highly sensitive to the presence of rigid fiber segments that restrict polymer chain movements and facilitate stress development. It follows that the physicochemical properties of the cellulosic matrices (molecular weight, crystallinity), associated with polymer chain mobility, might need to be carefully considered when designing these composites. At the same time, polyamide 6 showed excellent ability to accommodate short carbon fibers without leading to a largely brittle material, in this case, a maximum tensile strength of ~136 MPa was obtained at 20 wt% fiber loading. These results were further contrasted with that of a petroleum-based polypropylene matrix exhibiting inferior mechanical properties. Our study clearly indicates that carbon fiber reinforced polymers derived and designed using biomass-derived resources can be promising green materials for a sustainable future.
机译:碳纤维增强复合材料具有出色的潜力,可以在我们未来的材料世界中发挥关键作用。但是,他们的成功无疑取决于他们可以促进全球可持续发展目标的程度。利用这些复合材料中的聚合物可以潜在地衍生自生物量,对于下一代制造实践肯定是至关重要的。然而,深入的理解和剪裁纤维矩阵相互作用是关键的问题,以设计碳纤维增强可持续资源的生物复合材料。在该研究中,纤维素衍生物(纤维素丙酸盐和乙酸纤维素)用作模型聚合物基质,其可能由生物量制成,并且制备的短碳纤维增强复合材料的机械性能通过功能性生物粘液涂层设计在纤维表面上。此外,还制备聚酰胺6种基复合材料,可以使用未来的木质纤维素生物量(通过5-羟甲基糠醛)的C6糖来获得该聚合物的单体。通过工业上可扩展的良性环氧化反应,木质素成功地固定在碳纤维表面上。表面改性对纤维素丙酸盐和聚酰胺6复合材料的机械性能具有有益的影响。此外,我们的结果还揭示了基于纤维素的基质对限制聚合物链运动的刚性纤维段的存在非常敏感,并促进应力发育。因此,在设计这些复合材料时可能需要仔细考虑与聚合物链迁移率相关的纤维素基质(分子量,结晶度)的物理化学性质。同时,聚酰胺6显示出容纳短碳纤维的优异能力,无需导致大量脆性材料,在这种情况下,在20wt%纤维负载下获得〜136MPa的最大拉伸强度。这些结果与具有较差的机械性能的石油基聚丙烯基质进一步形成对比。我们的研究清楚地表明,使用生物质衍生的资源来源和设计的碳纤维增强聚合物可以是可持续未来的绿色材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号