首页> 外文OA文献 >Quantitative Deterioration Assessment of Road Bridge Decks Based on Site Inspected Cracks
【2h】

Quantitative Deterioration Assessment of Road Bridge Decks Based on Site Inspected Cracks

机译:基于现场检查裂缝的道路桥甲板的定量恶化评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

By integrating a multi-scale simulation with the pseudo-cracking method, the remaining fatigue life of in-service reinforced concrete (RC) bridge decks can be estimated based upon their site-inspected crack patterns. But, it still takes time for computation. In order to achieve a quick deterioration-magnitude assessment of RC decks based upon their crack patterns, two evaluation methods are proposed. A predictive correlation between the remaining fatigue life and the cracks density (both cracks length and width) is presented as a fast judgment. For fair-detailed judgment, an artificial neural network (ANN) model is also introduced which is the basis of the machine learning. Both assessment methods are built commonly by thousands of artificial random crack patterns to cover all possible ranges since the variety of the real crack patterns on site is more or less limited. The built ANN performances are examined by k-fold cross-validation besides checking the prediction accuracy of real crack patterns of bridge RC decks. Finally, the hazard map of the deck’s bottom surface is introduced to indicate the location of higher risk cracking, which derives from the estimated weight of individual neuron in the built artificial neural network.
机译:通过集成的多尺度模拟与伪裂化方法中,在服务的剩余疲劳寿命钢筋混凝土(RC)桥面可以基于他们的网站核查裂纹图案来估计。但是,它仍然需要时间进行计算。为了实现基于其抗裂模式RC甲板的快速恶化幅度的评估,提出了两种评估方法。剩余疲劳寿命和裂纹密度(包括裂缝长度和宽度)之间的相关性的预测呈现作为一种快速的判断。对于公平详细判断,人工神经网络(ANN)模型也被引入这是机器学习的基础。这两种评估方法是由成千上万的人为随机裂纹图案通常内置涵盖所有可能的范围内,因为各种现场实际裂纹图案的或多或少的限制。内置ANN性能通过检查交叉验证除了检查的桥梁RC甲板的实际裂缝模式的预测精度的k倍。最后,介绍了甲板的底面的危险地图指示较高风险的开裂位置,从建造人工神经网络中个体神经元的估计重量派生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号