首页> 外文OA文献 >Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation
【2h】

Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation

机译:低强度低维多光谱荧光图像的无监督分解,用于肿瘤标定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unsupervised decomposition of static linear mixture model (SLMM) with ill-conditioned basis matrix and statistically dependent sources is considered. Such situation arises when low-dimensional low-intensity multi-spectral image of the tumour in the early stage of development is represented by the SLMM, wherein tumour is spectrally similar to the surrounding tissue. The original contribution of this paper is in proposing an algorithm for unsupervised decomposition of low-dimensional multi-spectral image for high-contrast tumour visualisation. It combines nonlinear band generation (NBG) and dependent component analysis (DCA) that itself combines linear pre-processing transform and independent component analysis (ICA). NBG is necessary to improve conditioning of the extended mixing matrix in the SLMM, while DCA is necessary to increase statistical independence between spectrally similar sources. We demonstrate good performance of the method on both computational model and experimental low-intensity red-green-blue fluorescent image of the surface tumour (basal cell carcinoma). We believe that presented method can be of use in other multi-channel medical imaging systems.
机译:考虑具有病态基础矩阵和统计相关源的静态线性混合模型(SLMM)的无监督分解。当SLMM代表肿瘤在早期发展阶段的低维低强度多光谱图像时,就会出现这种情况,其中肿瘤在光谱上与周围组织相似。本文的最初贡献在于提出了一种用于低对比度多光谱图像的无监督分解以实现高对比度肿瘤可视化的算法。它结合了非线性谱带生成(NBG)和相关成分分析(DCA),后者又结合了线性预处理变换和独立成分分析(ICA)。 NBG是改善SLMM中扩展混合矩阵条件的必要条件,而DCA是增加光谱相似源之间统计独立性的必要条件。我们证明该方法在表面肿瘤(基底细胞癌)的计算模型和实验性低强度红绿蓝荧光图像上均具有良好的性能。我们认为,提出的方法可以在其他多通道医学成像系统中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号