首页> 外文OA文献 >Improving forecasting accuracy for stock market data using EMD-HW bagging
【2h】

Improving forecasting accuracy for stock market data using EMD-HW bagging

机译:使用EMD-HW Bagging提高股市数据预测准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many researchers documented that the stock market data are nonstationary and nonlinear time series data. In this study, we use EMD-HW bagging method for nonstationary and nonlinear time series forecasting. The EMD-HW bagging method is based on the empirical mode decomposition (EMD), the moving block bootstrap and the Holt-Winter. The stock market time series of six countries are used to compare EMD-HW bagging method. This comparison is based on five forecasting error measurements. The comparison shows that the forecasting results of EMD-HW bagging are more accurate than the forecasting results of the fourteen selected methods.
机译:许多研究人员记录了股票市场数据是非标准和非线性时间序列数据。在这项研究中,我们使用EMD-HW装袋方法进行非视野和非线性时间序列预测。 EMD-HW Bagging方法基于经验模式分解(EMD),移动块举动和冬季。股票市场时间系列六个国家用于比较EMD-HW装袋方法。此比较基于五个预测误差测量。比较表明,EMD-HW Bagging的预测结果比十四所选方法的预测结果更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号