首页> 外文OA文献 >Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet
【2h】

Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet

机译:支持向量机(SVM)在Twitter DataSet的情感分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At present, in the mainstream sentiment analysis methods represented by the Support Vector Machine, the vocabulary and the latent semantic information involved in the text are not well considered, and sentiment analysis of text is dependent overly on the statistics of sentiment words. Thus, a Fisher kernel function based on Probabilistic Latent Semantic Analysis is proposed in this paper for sentiment analysis by Support Vector Machine. The Fisher kernel function based on the model is derived from the Probabilistic Latent Semantic Analysis model. By means of this method, latent semantic information involving the probability characteristics can be used as the classification characteristics, along with the improvement of the effect of classification for support vector machine, and the problem of ignoring the latent semantic characteristics in text sentiment analysis can be addressed. The results show that the effect of the method proposed in this paper, compared with the comparison method, is obviously improved.
机译:目前,在支持向量机所代表的主流情绪分析方法中,文本中涉及的词汇表和涉及的潜在语义信息不受欢迎,文本的情绪分析依赖于情绪词语的统计数据。因此,在本文中提出了一种基于概率潜在语义分析的Fisher核功能,以通过支持向量机进行情感分析。基于模型的Fisher内核功能来自概率潜在语义分析模型。借助于这种方法,涉及概率特性的潜在语义信息可以用作分类特性,随着支持向量机的分类效果的改善,以及忽略文本情感分析中的潜在语义特征的问题可以是解决。结果表明,与比较方法相比,本文提出的方法的效果明显改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号