首页> 外文OA文献 >Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning
【2h】

Estimation of the Energy Consumption of Battery Electric Buses for Public Transport Networks Using Real-World Data and Deep Learning

机译:利用现实世界数据和深度学习估算公共交通网络电池电力总线能耗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The estimation of energy consumption is an important prerequisite for planning the required infrastructure for charging and optimising the schedules of battery electric buses used in public urban transport. This paper proposes a model using a reduced number of readily acquired bus trip parameters: arrival times at the bus stops, map positions of the bus stops and a parameter indicating the trip conditions. A deep learning network is developed for deriving the estimates of energy consumption stop by stop of bus lines. Deep learning networks belong to the important group of methods capable of the analysis of large datasets—“big data”. This property allows for the scaling of the method and application to different sized transport networks. Validation of the network is done using real-world data provided by bus authorities of the town of Jaworzno in Poland. The estimates of energy consumption are compared with the results obtained using a regression model that is based on the collected data. Estimation errors do not exceed 7.1% for the set of several thousand bus trips. The study results indicate spots in the public transport network of potential power deficiency which can be alleviated by introducing a charging station or correcting the bus trip schedules.
机译:能源消耗的估计是规划所需基础设施的重要前提条件,用于收取和优化公共城市运输中使用的电池电动公交车的时间表。本文提出了一种模型,使用减少数量的易于获取的总线跳闸参数:乘坐总线的到达时间,总线站的地图位置和指示跳闸条件的参数。开发了深度学习网络,用于通过停止总线导出能耗停止的估计。深度学习网络属于能够分析大型数据集的重要方法 - “大数据”。此属性允许将方法和应用程序缩放到不同大小的传输网络。网络验证使用波兰朱鲁兹诺镇的公共汽车当局提供的真实世界数据完成。将能量消耗的估计与使用基于所收集的数据的回归模型获得的结果进行比较。对于数千道总线旅行的估计错误不超过7.1%。研究结果表明了公共交通网络的潜在能力缺乏网络,这可以通过引入充电站或纠正公共汽车旅行时间表而减轻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号