首页> 外文OA文献 >Nighttime Visibility Analysis and Estimation Method in the Presence of Dense Fog
【2h】

Nighttime Visibility Analysis and Estimation Method in the Presence of Dense Fog

机译:密集雾气存在的夜间可见性分析与估算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compared with daytime, a larger proportion of road accidents happens during nighttime. The altered visibility for drivers partially explains this situation. It becomes worse when dense fog is present. In this paper, we first define a standard night visibility index, which allows specifying the type of fog that an advanced driver assistance system should recognize. A methodology to detect the presence of night fog and characterize its density in images grabbed by an in-vehicle camera is then proposed. The detection method relies on the visual effects of night fog. A first approach evaluates the presence of fog around a vehicle due to the detection of the backscattered veil created by the headlamps. In this aim, a correlation index is computed between the current image and a reference image where the fog density is known. It works when the vehicle is alone on a highway without external light sources. A second approach evaluates the presence of fog due to the detection of halos around light sources ahead of the vehicle. It works with oncoming traffic and public lighting. Both approaches are illustrated with actual images of fog. Their complementarity makes it possible to envision a complete night-fog detection system. If fog is detected, its characterization is achieved by fitting the different correlation indexes with an empirical model. Experimental results show the efficiency of the proposed method. The main applications for such a system are, for instance, automation or adaptation of vehicle lights, contextual speed computation, and reliability improvement for camera-based systems.
机译:与白天相比,在夜间发生了更大比例的道路事故。司机的更改能见度部分地解释了这种情况。当存在密集的雾时,它变得更糟。在本文中,我们首先定义标准夜间可见性指数,它允许指定高级驾驶员辅助系统应该识别的雾类型。然后提出了一种检测夜间雾的存在的方法,并提出了由车载相机捕获的图像中的密度。检测方法依赖于夜雾的视觉效果。由于检测到由前照灯产生的反向散射面纱,第一方法评估车辆周围的雾的存在。在此目的,在当前图像和参考图像之间计算相关索引,其中雾密度是已知的。当车辆单独在没有外部光源的高速公路上单独时工作。第二种方法由于在车辆前方的光源周围的光源围绕光源检测,评估雾的存在。它适用于迎面而来的交通和公共照明。两种方法都用实际的雾图像说明。它们的互补性使得可以设想完整的夜洞检测系统。如果检测到雾,则通过用经验模型拟合不同的相关索引来实现其表征。实验结果表明了该方法的效率。例如,这种系统的主要应用是自动化或适应车辆灯,上下文速度计算和基于相机系统的可靠性改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号