We study the problem of assigning $K$ identical servers to a set of $N$parallel queues in a time-slotted queueing system. The connectivity of eachqueue to each server is randomly changing with time; each server can serve atmost one queue and each queue can be served by at most one server during eachtime slot. Such a queueing model has been used in addressing resourceallocation problems in wireless networks. It has been previously proven thatMaximum Weighted Matching (MWM) is a throughput-optimal server assignmentpolicy for such a queueing system. In this paper, we prove that for a systemwith i.i.d. Bernoulli packet arrivals and connectivities, MWM minimizes, instochastic ordering sense, a broad range of cost functions of the queue lengthssuch as total queue occupancy (which implies minimization of average queueingdelays). Then, we extend the model by considering imperfect services where itis assumed that the service of a scheduled packet fails randomly with a certainprobability. We prove that the same policy is still optimal for the extendedmodel. We finally show that the results are still valid for more generalconnectivity and arrival processes which follow conditional permutationinvariant distributions.
展开▼
机译:我们研究将$ k $相同的服务器分配给时隙排队系统中的一组$ n $ parallet队列的问题。每个服务器的每个服务器的连接性随机随机变化;每个服务器都可以满足最多一个队列,并且每个队列都可以在每次时隙期间最多一个服务器提供服务。这种排队模型已用于解决无线网络中的重构问题。先前已被证明,该匹配(MWM)是一种吞吐量最优服务器分配,用于这种排队系统。在本文中,我们证明了一个系统的系统。 Bernoulli数据包到达和连接性,MWM最小化,即时速度排序感,队列长度的广泛成本函数作为总队列占用(这意味着平均队列的最小化)。然后,我们通过考虑ITIS假设计划的数据包的服务随机使用AdeTeProbobability来扩展模型。我们证明了相同的政策对ExtendedModel仍然是最佳的。我们终于表明,结果仍然有效地遵循遵循条件渗透识别分布的更多通用连接和到达过程。
展开▼