首页> 外文OA文献 >The study of EEG Recognition of Depression on Bi-LSTM based on ERP P300
【2h】

The study of EEG Recognition of Depression on Bi-LSTM based on ERP P300

机译:基于ERP P300的Bi-LSTM抑郁症脑电图识别研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Depression is a kind of relatively common psychological disease of among people. The extract of EEG feature is to utilize the course of development of better aided diagnosis with depression patients, so as to put forward the accurate treatment options. The traditional machine study is to directly input EEG into Neural Networks and not to consider the influence of time series for data accuracy and Bi-LSTM is not only to inherit the treatment of LSTM to timely constraint, but also combine the influence of two-way factors on neutral network, which has good computing advantage. This essay adopts a kind of the study of EEG recognition of depression on Bi-LSTM based on ERP. Compared with other model, the accuracy rate identification and classification under 16 reaches 80.6% with good credit after the improvement of the Bi- LSTM.
机译:抑郁症是一种人群中的一种相对普遍的心理疾病。 EEG特征的提取物是利用抑郁症患者更好地辅助诊断的发展过程,以提出准确的治疗方案。传统的机器研究是将EEG直接输入神经网络,而不是考虑数据准确性的时间序列的影响,Bi-LSTM不仅是继承LSTM的处理及时的限制,还结合了双向的影响中立网络的因素,具有良好的计算优势。本文采用了一种基于ERP的BI-LSTM抑郁症的研究。与其他模型相比,16岁以下的准确率鉴定和分类达到80.6%,良好的信贷后,在改善双LSTM后。

著录项

  • 作者

    Yuping Zhang; Zhigang Fu;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 fra/fre;eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号