首页> 外文OA文献 >Idealized Large-Eddy and Convection-Resolving Simulations of Moist Convection over Mountainous Terrain
【2h】

Idealized Large-Eddy and Convection-Resolving Simulations of Moist Convection over Mountainous Terrain

机译:在山区地形上的理想化大型和对流解决潮湿对流的模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

On summertime fair-weather days, thermally-driven wind systems play an important role in determining the initiation of convection and the occurrence of localized precipitation episodes over mountainous terrain. This study compares the mechanisms of convection initiation and precipitation development within a thermally-driven flow over an idealized double ridge system in largeeddy (LES) and convection-resolving (CRM) simulations. First, LES at a horizontal grid spacing of 200m is employed to analyze the developing circulations and associated clouds and precipitation. Second, CRM simulations at horizontal grid length of 1 km are conducted to evaluate the performance of a kilometer-scale model in reproducing the discussed mechanisms. Mass convergence and a weaker inhibition over the two ridges flanking the valley combine with water vapor advection by upslope winds to initiate deep convection. In the CRM simulations, the spatial distribution of clouds and precipitation is generally well captured. However, if the mountains are high enough to force the thermally-driven flow into an elevated mixed layer, the transition to deep convection occurs faster, precipitation is generated earlier and surface rainfall rates are higher compared to the LES. Vertical turbulent fluxes remain largely unresolved in the CRM simulations and are underestimated by the model, leading to stronger upslope winds and increased horizontal moisture advection toward the mountain summits. The choice of the turbulence scheme and the employment of a shallow convection parameterization in the CRM simulations change the strength of the upslope winds, thereby influencing the simulated timing and intensity of convective precipitation.
机译:在夏季的晴天,热驱动的风力系统在确定对流的开始以及山区地形局部降水事件的发生中起着重要作用。这项研究比较了大型(LES)和对流分辨(CRM)模拟中理想双脊系统上热驱动流内对流引发和降水形成的机理。首先,使用水平网格间距为200m的LES分析正在发展的环流以及相关的云和降水。其次,在1 km的水平网格长度上进行CRM仿真,以评估千米尺度模型在重现所讨论机制方面的性能。质量汇聚和对山谷两侧的两个山脊的抑制作用较弱,再加上上坡风对水蒸气的对流,引发了深对流。在CRM模拟中,通常可以很好地捕获云层和降水的空间分布。但是,如果山高到足以迫使热驱动流进入高架的混合层,则与LES相比,向深对流的过渡会更快,会更早产生降水并且地表降雨率更高。垂直湍流通量在CRM模拟中仍未解决,并且被模型低估了,从而导致更强的上坡风和增加的向山顶的水平湿度平流。 CRM模拟中湍流方案的选择和浅对流参数化的使用改变了上坡风的强度,从而影响了模拟对流降水的时间和强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号