首页> 外文OA文献 >A Multi-Level Privacy-Preserving Approach to Hierarchical Data Based on Fuzzy Set Theory
【2h】

A Multi-Level Privacy-Preserving Approach to Hierarchical Data Based on Fuzzy Set Theory

机译:基于模糊集理论的分层数据的多级隐私保留方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, more and more applications are dependent on storage and management of semi-structured information. For scientific research and knowledge-based decision-making, such data often needs to be published, e.g., medical data is released to implement a computer-assisted clinical decision support system. Since this data contains individuals’ privacy, they must be appropriately anonymized before to be released. However, the existing anonymization method based on l-diversity for hierarchical data may cause serious similarity attacks, and cannot protect data privacy very well. In this paper, we utilize fuzzy sets to divide levels for sensitive numerical and categorical attribute values uniformly (a categorical attribute value can be converted into a numerical attribute value according to its frequency of occurrences), and then transform the value levels to sensitivity levels. The privacy model ( α l e v h , k)-anonymity for hierarchical data with multi-level sensitivity is proposed. Furthermore, we design a privacy-preserving approach to achieve this privacy model. Experiment results demonstrate that our approach is obviously superior to existing anonymous approach in hierarchical data in terms of utility and security.
机译:如今,越来越多的应用程序取决于半结构信息的存储和管理。对于科学研究和知识的决策,这些数据通常需要发布,例如,释放医疗数据以实施计算机辅助的临床决策支持系统。由于此数据包含个人隐私,因此必须在释放之前适当地匿名。但是,基于分层数据的L-多样性的现有匿名化方法可能导致严重的相似性攻击,并且不能很好地保护数据隐私。在本文中,我们利用模糊组来均匀地划分敏感数值和分类属性值的水平(根据其出现频率,可以将分类属性值转换为数值值),然后将值级别转换为灵敏度级别。提出了具有多级灵敏度的分层数据的隐私模型(α1ev h,k) - anishicality。此外,我们设计了一种隐私保留方法来实现本隐私模型。实验结果表明,在实用程序和安全性方面,我们的方法显然是在分层数据中的现有匿名方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号