In this paper we calculate the collection of limit functions obtained byapplying an extension of Zalcman's Lemma, due to X. C. Pang, to the non-normalfamily $left{f(nz):ninmathbb{N}ight}$ in $mathbb{C}$, where $f=Re^P$.Here $R$ and $P$ are an arbitrary rational function and a polynomial,respectively, where $P$ is a non-constant polnomial.
展开▼
机译:在本文中,我们计算通过将Zalcman引理的扩展(由于XC Pang)应用于非正规家庭$ left {f(nz):n in mathbb {N} right }而获得的极限函数的集合$ mathbb {C} $中的$,其中$ f = Re ^ P $。这里$ R $和$ P $是任意有理函数和多项式,其中$ P $是非常数多项式。
展开▼