首页> 外文OA文献 >Compressive Strength Prediction of PVA Fiber-Reinforced Cementitious Composites Containing Nano-SiO2 Using BP Neural Network
【2h】

Compressive Strength Prediction of PVA Fiber-Reinforced Cementitious Composites Containing Nano-SiO2 Using BP Neural Network

机译:使用BP神经网络含有纳米SiO2纳米SiO2的PVA纤维增强水泥复合材料的抗压强度预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, a method to optimize the mixing proportion of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites and improve its compressive strength based on the Levenberg-Marquardt backpropagation (BP) neural network algorithm and genetic algorithm is proposed by adopting a three-layer neural network (TLNN) as a model and the genetic algorithm as an optimization tool. A TLNN was established to implement the complicated nonlinear relationship between the input (factors affecting the compressive strength of cementitious composite) and output (compressive strength). An orthogonal experiment was conducted to optimize the parameters of the BP neural network. Subsequently, the optimal BP neural network model was obtained. The genetic algorithm was used to obtain the optimum mix proportion of the cementitious composite. The optimization results were predicted by the trained neural network and verified. Mathematical calculations indicated that the BP neural network can precisely and practically demonstrate the nonlinear relationship between the cementitious composite and its mixture proportion and predict the compressive strength. The optimal mixing proportion of the PVA fiber-reinforced cementitious composites containing nano-SiO2 was obtained. The results indicate that the method used in this study can effectively predict and optimize the compressive strength of PVA fiber-reinforced cementitious composites containing nano-SiO2.
机译:在本研究中,通过采用三个 - 采用三 - 施加三百年 - 射击 - Marquardt(BP)神经网络算法提出了一种优化聚乙烯醇(PVA)纤维增强水泥化合物和改善其抗压强度的方法。层神经网络(TLNN)作为一种型号和遗传算法作为优化工具。建立了TLNN,以实现输入(影响水泥复合材料抗压强度)和输出(抗压强度)之间的复杂非线性关系。进行正交实验以优化BP神经网络的参数。随后,获得了最佳BP神经网络模型。遗传算法用于获得水泥复合材料的最佳混合比例。经过训练的神经网络预测优化结果并验证。数学计算表明,BP神经网络可以精确地展示水泥复合材料与其混合比例之间的非线性关系,并预测抗压强度。得到含纳米SiO 2的PVA纤维增强胶质复合材料的最佳混合比例。结果表明该研究中使用的方法可以有效地预测和优化含有纳米SiO2的PVA纤维增强水泥复合材料的抗压强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号