首页> 外文OA文献 >Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression
【2h】

Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression

机译:轴压下钢柱屈曲损伤的混合人工智能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study aims to investigate the prediction of critical buckling load of steel columns using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized by Particle Swarm Optimization (ANFIS-PSO). For this purpose, a total number of 57 experimental buckling tests of novel high strength steel Y-section columns were collected from the available literature to generate the dataset for training and validating the two proposed AI models. Quality assessment criteria such as coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to validate and evaluate the performance of the prediction models. Results showed that both ANFIS-GA and ANFIS-PSO had a strong ability in predicting the buckling load of steel columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522 and MAE = 44.044) was slightly better than ANFIS-GA (R2 = 0.916, RMSE = 65.371 and MAE = 48.588). The two models were also robust even with the presence of input variability, as investigated via Monte Carlo simulations. This study showed that the hybrid AI techniques could help constructing an efficient numerical tool for buckling analysis.
机译:本研究旨在使用诸如遗传算法(ANFIS-GA)优化的自适应神经模糊推理系统,以及通过粒子优化的自适应神经模糊推理系统,调查钢柱关键屈曲负荷的预测群优化(ANFIS-PSO)。为此目的,从可用文献中收集了新型高强度钢Y型柱的总数为57个实验屈曲试验,以产生用于训练和验证两个提出的AI模型的数据集。质量评估标准,如确定系数(R2),平均绝对误差(MAE)和根均方误差(RMSE)用于验证和评估预测模型的性能。结果表明,两种ANFIS-GA和ANFIS-PSO有在预测钢柱的压曲载荷能力强,但ANFIS-PSO(R2 = 0.929,RMSE = 60.522和MAE = 44.044)略好于ANFIS-GA(R2 = 0.916,RMSE = 65.371和MAE = 48.588)。即使存在输入可变性,这两种型号也是坚固的,如通过Monte Carlo仿真所研究的。该研究表明,杂交AI技术可以帮助构建用于屈曲分析的有效数值工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号