首页> 外文OA文献 >A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data
【2h】

A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data

机译:覆盖LANDSAT-8和MODIS数据的土地表面温度的数据融合建模框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Land surface temperature (LST) is a critical state variable of land surface energy equilibrium and a key indicator of environmental change such as climate change, urban heat island, and freezing-thawing hazard. The high spatial and temporal resolution datasets are urgently needed for a variety of environmental change studies, especially in remote areas with few LST observation stations. MODIS and Landsat satellites have complementary characteristics in terms of spatial and temporal resolution for LST retrieval. To make full use of their respective advantages, this paper developed a pixel-based multi-spatial resolution adaptive fusion modeling framework (called pMSRAFM). As an instance of this framework, the data fusion model for joint retrieval of LST from Landsat-8 and MODIS data was implemented to generate the synthetic LST with Landsat-like spatial resolution and MODIS temporal information. The performance of pMSRAFM was tested and validated in the Heihe River Basin located in China. The results of six experiments showed that the fused LST was high similarity to the direct Landsat-derived LST with structural similarity index (SSIM) of 0.83 and the index of agreement (d) of 0.84. The range of SSIM was 0.65–0.88, the root mean square error (RMSE) yielded a range of 1.6–3.4 °C, and the averaged bias was 0.6 °C. Furthermore, the temporal information of MODIS LST was retained and optimized in the synthetic LST. The RMSE ranged from 0.7 °C to 1.5 °C with an average value of 1.1 °C. When compared with in situ LST observations, the mean absolute error and bias were reduced after fusion with the mean absolute bias of 1.3 °C. The validation results that fused LST possesses the spatial pattern of Landsat-derived LSTs and inherits most of the temporal properties of MODIS LSTs at the same time, so it can provide more accurate and credible information. Consequently, pMSRAFM can be served as a promising and practical fusion framework to prepare a high-quality LST spatiotemporal dataset for various applications in environment studies.
机译:土地表面温度(LST)是土地能量均衡的临界状态变量,以及环境变化的关键指标,如气候变化,城市热岛和冻融危险。迫切需要高空间和时间分辨率数据集,迫切需要各种环境变化研究,尤其是具有少数LST观察站的偏远地区。 Modis和Landsat卫星在LST检索的空间和时间分辨率方面具有互补特性。为了充分利用各自的优势,本文开发了一种基于像素的多空间分辨率自适应融合建模框架(称为PMSRAFM)。作为本框架的一个实例,实现了来自Landsat-8和MODIS数据的LST联合检索的数据融合模型,以生成与Landsat的空间分辨率和MODIS时间信息的合成LST。 PMSRAFM的表现在位于中国的黑河流域进行了测试和验证。六个实验的结果表明,熔融LST与0.83的结构相似指数(SSIM)的直接Landsat-errived LST高相似性,协议指数(D)为0.84。 SSIM的范围为0.65-0.88,根均方误差(RMSE)产生1.6-3.4℃的范围,平均偏置为0.6℃。此外,在合成LST中保留和优化了MODIS LST的时间信息。 RMSE从0.7°C到1.5°C的平均值为1.1°C。与原位LST观察相比,融合后平均绝对误差和偏置在融合时,平均绝对偏压为1.3°C。融合LST的验证结果具有Landsat-errived LST的空间模式,同时继承Modis LST的大多数时间特性,因此它可以提供更准确和可靠的信息。因此,PMSRAFM可以作为有希望和实用的融合框架,为环境研究中的各种应用制备高质量的LST时空数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号