首页> 外文OA文献 >Multi-Regional Online Car-Hailing Order Quantity Forecasting Based on the Convolutional Neural Network
【2h】

Multi-Regional Online Car-Hailing Order Quantity Forecasting Based on the Convolutional Neural Network

机译:基于卷积神经网络的多区域在线车载秩序预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the development of online cars, the demand for travel prediction is increasing in order to reduce the information asymmetry between passengers and drivers of online car-hailing. This paper proposes a travel demand forecasting model named OC-CNN based on the convolutional neural network to forecast the travel demand. In order to make full use of the spatial characteristics of the travel demand distribution, this paper meshes the prediction area and creates a travel demand data set of the graphical structure to preserve its spatial properties. Taking advantage of the convolutional neural network in image feature extraction, the historical demand data of the first twenty-five minutes of the entire region are used as a model input to predict the travel demand for the next five minutes. In order to verify the performance of the proposed method, one-month data from online car-hailing of the Chengdu Fourth Ring Road are used. The results show that the model successfully extracts the spatiotemporal features of the data, and the prediction accuracies of the proposed method are superior to those of the representative methods, including the Bayesian Ridge Model, Linear Regression, Support Vector Regression, and Long Short-Term Memory networks.
机译:随着在线汽车的发展,旅行预测的需求正在增加,以减少在线车载乘客和驱动程序之间的信息不对称。本文提出了一种基于卷积神经网络的名为OC-CNN的旅行需求预测模型,以预测旅行需求。为了充分利用旅行需求分布的空间特性,本文将预测区域啮合并创建图形结构的旅行需求数据集以保持其空间特性。利用图像特征提取中的卷积神经网络,整个区域的前二十五分钟的历史需求数据用作模型输入,以预测未来五分钟的旅行需求。为了验证所提出的方法的表现,使用了成都第四环道路的在线汽车的一个月数据。结果表明,该模型成功提取了数据的时空特征,所提出的方法的预测精度优于代表方法,包括贝叶斯脊模型,线性回归,支持向量回归和长期短期内存网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号