首页> 外文OA文献 >Predicting Freeway Work Zone Delays and Costs with a Hybrid Machine-Learning Model
【2h】

Predicting Freeway Work Zone Delays and Costs with a Hybrid Machine-Learning Model

机译:预测高速公路工作区延迟和成本与混合机器学习模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A hybrid machine-learning model, integrating an artificial neural network (ANN) and a support vector machine (SVM) model, is developed to predict spatiotemporal delays, subject to road geometry, number of lane closures, and work zone duration in different periods of a day and in the days of a week. The model is very user friendly, allowing the least inputs from the users. With that the delays caused by a work zone on any location of a New Jersey freeway can be predicted. To this end, tremendous amounts of data from different sources were collected to establish the relationship between the model inputs and outputs. A comparative analysis was conducted, and results indicate that the proposed model outperforms others in terms of the least root mean square error (RMSE). The proposed hybrid model can be used to calculate contractor penalty in terms of cost overruns as well as incentive reward schedule in case of early work competition. Additionally, it can assist work zone planners in determining the best start and end times of a work zone for developing and evaluating traffic mitigation and management plans.
机译:混合机器学习模型,集成人工神经网络(ANN)和支持向量机(SVM)模型,开发出用于预测天空延迟,经过不同时期的道路几何形状,车道关闭数和工作区持续时间一天和一周的日子。该模型非常用户友好,允许用户最少的输入。因此,可以预测由新泽西高速公路的任何位置的工作区造成的延迟。为此,收集来自不同来源的大量数据,以建立模型输入和输出之间的关系。进行了比较分析,结果表明所提出的模型在最小根均方误差(RMSE)方面优于其他模型。建议的混合模型可用于在成本超支和早期工作竞争的情况下计算承包商处罚。此外,它可以帮助工作区规划人员确定工作区的最佳开始和结束时间,以开发和评估流量缓解和管理计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号