首页> 外文OA文献 >A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past
【2h】

A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past

机译:森林库存样本地块的柔性高度直径模型使用过去的反复措施

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, height–diameter relations were modeled using two different mixed model types for imputation of missing heights from longitudinal data. Model Type A had a hierarchical structure of sample plot-specific and measurement occasion-specific random effects. In Model Type B, a possible temporal variance was modeled by a sample plot-specific linear time trend. Furthermore, various calibration strategies of random effects were performed on past and current data, and a combination of both. The performance of the mixed models was compared on independent data using bias and root mean square error (RMSE). The results showed that Model Type A achieved the highest precision (lowest RMSE), if sample plot-specific random effects were predicted from old data and measurement occasion-specific ones were predicted from new data. In comparison, however, Model Type B had a higher RMSE, and lower bias. Model performance was almost unaffected from the usage of past or current data for the prediction of random effects. Results revealed that a certain calibration strategy should be simultaneously applied to all random effects from the same hierarchy level. Otherwise, predictions would become imprecise and a serious bias may result. In comparison with traditional uniform height curves, the novel mixed model approach performed slightly better.
机译:在这项研究中,使用两种不同的混合模型类型模拟高度直径关系,用于从纵向数据的缺失高度的归档。模型A型具有特定于样本绘图和测量特定的随机效果的分层结构。在模型B型中,通过特定于样本的图形线性时间趋势来建模可能的时间方差。此外,对过去和当前数据进行随机效应的各种校准策略,以及两者的组合。比较混合模型的性能在使用偏差和均方根误差(RMSE)的独立数据。结果表明,如果从旧数据预测样本绘图特定的随机效果,则达到最高精度(最低RMSE),并且从新数据预测了特定于旧数据和测量场合。然而,相比之下,模型B型具有更高的RMSE和更低的偏差。模型性能几乎不受使用过去或当前数据的影响,以预测随机效应。结果表明,应同时应用一定的校准策略从相同的层级水平的所有随机效应应用。否则,预测将变得不精确,可能会产生严重的偏见。与传统的均匀高度曲线相比,新颖的混合模型方法略好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号