首页> 外文OA文献 >A method for identifying high outliers in construction contract auctions
【2h】

A method for identifying high outliers in construction contract auctions

机译:一种识别施工合同拍卖中的高异点的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Construction contract auctions are characterised by (1) a heavy emphasis on the lowest bid as it is that which usually determines the winner of the auction, (2) anticipated high outliers due to the presence of non-competitive bids, (3) very small samples, and (4) uncertainty of the appropriate underlying density function model of the bids. This paper describes a method for simultaneously identifying outliers and density function by systematically identifying and removing candidate (high) outliers and examining the composite goodness-of-fit of the resulting reduced samples with censored normal and lognormal density function. The special importance of the lowest bid value in this context is utilised in the goodness-of-fit test by the probability of the lowest bid recorded for each auction as a lowest order statistic. Six different identification strategies are tested empirically by application, both independently and in pooled form, to eight sets of auction data gathered from around the world. The results indicate the most conservative identification strategy to be a multiple of the auction standard deviation assuming a lognormal composite density. Surprisingly, the normal density alternative was the second most conservative solution. The method is also used to evaluate some methods used in practice and to identify potential improvements.
机译:施工合同拍卖的特点是(1)强调最低出价,因为它通常是决定拍卖中标者的原因;(2)由于存在非竞争性出价,因此预期会有较高的离群值;(3)很小样本,以及(4)出价的适当基础密度函数模型的不确定性。本文介绍了一种通过系统地识别和删除候选(高)离群值并检查带有删减的正态和对数正态密度函数的缩减样本的复合拟合优度,来同时识别离群值和密度函数的方法。在这种情况下,最低竞标价格的特殊重要性在拟合优度测试中被利用,因为每次拍卖记录的最低竞标的概率为最低订单统计量。通过对来自世界各地收集的八组拍卖数据的应用,分别独立地或以汇总形式对六种不同的识别策略进行了经验检验。结果表明,最保守的识别策略是拍卖标准偏差​​的倍数,假设对数正态复合密度。令人惊讶的是,法线密度替代方案是第二保守的解决方案。该方法还用于评估实践中使用的某些方法并确定潜在的改进。

著录项

  • 作者

    Martin Skitmore; H. P. Lo;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号