首页> 外文OA文献 >Time and Cost Efficient Cloud Resource Allocation for Real-Time Data-Intensive Smart Systems
【2h】

Time and Cost Efficient Cloud Resource Allocation for Real-Time Data-Intensive Smart Systems

机译:实时数据密集型智能系统的时间和成本高效的云资源分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cloud computing is the de facto platform for deploying resource- and data-intensive real-time applications due to the collaboration of large scale resources operating in cross-administrative domains. For example, real-time systems are generated by smart devices (e.g., sensors in smart homes that monitor surroundings in real-time, security cameras that produce video streams in real-time, cloud gaming, social media streams, etc.). Such low-end devices form a microgrid which has low computational and storage capacity and hence offload data unto the cloud for processing. Cloud computing still lacks mature time-oriented scheduling and resource allocation strategies which thoroughly deliberate stringent QoS. Traditional approaches are sufficient only when applications have real-time and data constraints, and cloud storage resources are located with computational resources where the data are locally available for task execution. Such approaches mainly focus on resource provision and latency, and are prone to missing deadlines during tasks execution due to the urgency of the tasks and limited user budget constraints. The timing and data requirements exacerbate the efficient task scheduling and resource allocation problems. To cope with the aforementioned gaps, we propose a time- and cost-efficient resource allocation strategy for smart systems that periodically offload computational and data-intensive load to the cloud. The proposed strategy minimizes the data files transfer overhead to computing resources by selecting appropriate pairs of computing and storage resources. The celebrated results show the effectiveness of the proposed technique in terms of resource selection and tasks processing within time and budget constraints when compared with the other counterparts.
机译:云计算是部署资源和数据密集型实时应用程序的事实上平台,因为在交叉管理域中运行的大规模资源的协作。例如,实时系统由智能设备(例如,智能家庭中的传感器,在实时监控周围环境,安全摄像机实时生成视频流,云游戏,社交媒体流等)。这种低端设备形成微电网,该微电网具有低计算和存储容量,因此卸载数据以进行处理。云计算仍然缺乏成熟的时刻调度和资源分配策略,这些调度彻底刻意严格的QoS。只有当应用程序具有实时和数据约束时,传统方法就足够了,并且云存储资源具有计算资源,其中数据在本地可用于任务执行。此类方法主要关注资源提供和延迟,并且由于任务的紧迫性和有限的用户预算限制而在执行期间,易于缺少截止日期。时序和数据要求加剧了有效的任务调度和资源分配问题。为了应对上述差距,我们为智能系统提出了一种时间和成本高效的资源分配策略,其定期卸载到云的计算和数据密集型负载。所提出的策略通过选择适当的计算和存储资源,最小化数据文件将开销传输到计算资源。庆祝的结果表明,与其他对应物相比,在时间和预算限制的时间和预算限制方面,所提出的技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号