首页> 外文OA文献 >An Extended Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) with Maximizing Deviation Method Based on Integrated Weight Measure for Single-Valued Neutrosophic Sets
【2h】

An Extended Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) with Maximizing Deviation Method Based on Integrated Weight Measure for Single-Valued Neutrosophic Sets

机译:具有相似性与理想解决方案(TOPSIS)的顺序偏好的扩展技术,其具有基于单值中性套装的集成重量测量的最大化偏差法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the standard interval of [0, 1]. This paper presents a modified Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) with maximizing deviation method based on the single-valued neutrosophic set (SVNS) model. An integrated weight measure approach that takes into consideration both the objective and subjective weights of the attributes is used. The maximizing deviation method is used to compute the objective weight of the attributes, and the non-linear weighted comprehensive method is used to determine the combined weights for each attributes. The use of the maximizing deviation method allows our proposed method to handle situations in which information pertaining to the weight coefficients of the attributes are completely unknown or only partially known. The proposed method is then applied to a multi-attribute decision-making (MADM) problem. Lastly, a comprehensive comparative studies is presented, in which the performance of our proposed algorithm is compared and contrasted with other recent approaches involving SVNSs in literature.
机译:单值的中性化学套(SVN)是中性学型集的特殊情况,其特征在于,其特征在于,其特征在于,每个都是在[0,1]的标准间隔中所在的真实性,不确定和虚体隶属函数。本文介绍了通过相似性与理想解决方案(TOPSIS)的顺序优先考虑的修改技术,其基于单值中性学集(SVN)模型的最大化偏差方法。考虑到所使用属性的目标和主观权重的集成重量测量方法。最大化偏差方法用于计算属性的客观权重,并且使用非线性加权综合方法来确定每个属性的组合权重。最大化偏差方法的使用允许我们提出的方法处理与属性的权重系数有关的信息完全未知或仅部分已知的情况。然后将所提出的方法应用于多属性决策(MADM)问题。最后,提出了一个全面的比较研究,其中比较了我们所提出的算法的表现,并与涉及文献中的SVNS的其他方法对比。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号