首页> 外文OA文献 >An inductive-capacitive-circuit-based micro-electromechanical system wireless capacitive pressure sensor for avionic applications: Preliminary investigations, theoretical modelling and simulation examination of newly proposed methodology
【2h】

An inductive-capacitive-circuit-based micro-electromechanical system wireless capacitive pressure sensor for avionic applications: Preliminary investigations, theoretical modelling and simulation examination of newly proposed methodology

机译:基于电感电容电路的微机电系统无线电容压力传感器,用于航空应用:新提出的方法论的初步研究,理论建模和仿真检查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pressure is a key unit of measure in aerospace industries. Spontaneous precise measurement of pressure has to be compassed at locations where it is futile and impractical to couple the pressure responsive constituent to the conditional electronics or computational circuit by practicing standard cables and measurements prone to harsh environment. This paper introduces the design of a wireless pressure-monitoring system for aerospace applications in harsh environment. Traditionally, applied pressure deflects a delicate silicon diaphragm, altering the capacitance developed between it and metal electrode firm on a substrate. The LC circuit translates the pressure variation into the LC resonant frequency shift. This change is sensed remotely by virtue of inductance coupling, expelling the compulsion for wire connection rooted telemetry circuits. Novelty of our work rests in the fact that contrary to examining shift in the resonant frequency due to the applied pressure, we have put in effort to maintain resonant shifting equal to zero by varying the capacitance at the observer unit. This will allow pressure variations to be measured directly in terms of the capacitance variation at a fixed resonant frequency, which is 7.92 MHz in our context. According to the application domain (avionics), the proposed sensor structure is designed for functioning in the pressure range between (100 and 1140) mbar. The choice of design values for sensor parameters has been validated. The sensitivity is measured to be 1.746e−17 F/Pa over specified linear range which is shown to match a theoretical estimate realized by mathematical model. An in-depth, step by step derivation of performance parameters to achieve above-stated objective is shown for sensor under study. The results generated are modelled and examined using MATLAB. The analysis conducted dovetail perfectly with the modelled results.
机译:压力是航空航天工业中衡量标准的关键单位。通过练习标准电缆和易于苛刻的环境来将压力响应于条件电子设备或计算电路的压力响应于条件电子或计算电路的位置,压力的自发精确测量必须朝着徒劳无功令人敬事。本文介绍了苛刻环境中航空航天应用无线压力监测系统的设计。传统上,施加的压力偏转了精致的硅隔膜,改变其在衬底上的电容和金属电极固件之间的电容。 LC电路将压力变化转换为LC谐振频移。通过电感耦合远程感测到这种变化,驱逐线连接根遥测电路的强迫。我们的作品的新颖性依赖于与施加压力引起的谐振频率的检查变化相反,我们通过改变观察者单元的电容来维持等于零的谐振换档。这将允许在固定谐振频率下的电容变化方面直接测量压力变化,这是我们上下文中的7.92 MHz。根据应用领域(航空电子设备),所提出的传感器结构设计用于在(100和1140)曼巴之间的压力范围内的功能。已验证了传感器参数的设计值的选择。测量灵敏度在指定的线性范围内测量为1.746E-17 F / PA,其被示出匹配数学模型实现的理论估计。在研究中,示出了在研究中实现以实现上述目的的性能参数的深入推导。使用MATLAB模拟和检查产生的结果。分析与建模结果完美地进行了燕尾。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号