首页> 外文OA文献 >Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
【2h】

Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks

机译:评估生物医学名为实体识别任务中的字表示功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomedical Named Entity Recognition (BNER), which extracts important entities such as genes and proteins, is a crucial step of natural language processing in the biomedical domain. Various machine learning-based approaches have been applied to BNER tasks and showed good performance. In this paper, we systematically investigated three different types of word representation (WR) features for BNER, including clustering-based representation, distributional representation, and word embeddings. We selected one algorithm from each of the three types of WR features and applied them to the JNLPBA and BioCreAtIvE II BNER tasks. Our results showed that all the three WR algorithms were beneficial to machine learning-based BNER systems. Moreover, combining these different types of WR features further improved BNER performance, indicating that they are complementary to each other. By combining all the three types of WR features, the improvements in F-measure on the BioCreAtIvE II GM and JNLPBA corpora were 3.75% and 1.39%, respectively, when compared with the systems using baseline features. To the best of our knowledge, this is the first study to systematically evaluate the effect of three different types of WR features for BNER tasks.
机译:从基因和蛋白质如基因和蛋白质中提取重要实体的生物医学命名实体识别(BNER)是生物医学领域中的自然语言处理的关键步骤。基于机器学习的方法已应用于BNER任务并显示出良好的性能。在本文中,我们系统地调查了BNER的三种不同类型的单词表示(WR)功能,包括基于聚类的表示,分配表示和Word Embeddings。我们从三种类型的WR功能中选择了一种算法,并将其应用于JNLPBA和BioCreative II BNER任务。我们的研究结果表明,所有三种WR算法都有利于基于机器学习的BNER系统。此外,组合这些不同类型的WR功能进一步改善了BNER性能,表明它们彼此互补。通过组合所有三种类型的WR功能,与使用基线特征的系统相比,Biocreative II GM和JNLPBA Corpora的F-Meastic的改进分别为3.75%和1.39%。据我们所知,这是第一次系统地评估三种不同类型WR功能对BNER任务的影响的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号