首页> 外文OA文献 >Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms
【2h】

Time Series Analysis and Forecasting for Wind Speeds Using Support Vector Regression Coupled with Artificial Intelligent Algorithms

机译:使用支持向量回归与人工智能算法耦合的风速时间序列分析和预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC) analysis and a support vector regression (SVR) model that is coupled with brainstorm optimization (BSO) and cuckoo search (CS) algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.
机译:由于其可再生性和环境友好,风速/动力在地球上受到了越来越关注。随着全球安装的风力发电能力迅速增加,风力行业正在成长为大型企业。可靠的短期风速预测在风能转换系统中发挥了实际和至关重要的作用,例如风力涡轮机的动态控制和电力系统调度。在本文中,检查了用于短期风速预测的智能混合模型;该模型是基于互相关(CC)的分析和经耦合以与头脑风暴优化(BSO)和杜鹃搜索(CS)算法,其分别成功地用于参数确定一个支持向量回归(SVR)的模型。拟议的混合模型用于预测由位于中国风电场的四个风力涡轮机收集的短期风速。预测结果表明,智能混合模型为短期风速预测优于单一模型,主要是由BSO和CS参数优化的优越性产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号