首页> 外文OA文献 >Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration
【2h】

Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration

机译:聚(ε-己内酯)/氧化石墨烯膜作为用于体外神经组织再生的支架的水解降解和机械稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.
机译:用下在体外培养条件下模拟还原的石墨烯氧化物(RGO)纳米片官能(PCL)膜新颖聚(ε - 己内酯)的本工作研究功能行为(磷酸盐缓冲溶液(PBS)中在37℃)中1年,为了阐明它们的适用性作为支架用于体外的神经再生。形态,化学和DSC结果表明,膜的高内部孔隙率促进水的渗透和采购整个本体通路的加速水解降解。因此,类似的分子量降低,从80 kDa至33 kDa的用于控制PCL,并且至27 kDa的用于PCL / RGO膜,在研究结束时,观察到。 1年水解降解后,虽然从PCL的水解裂解来单体朝向PBS介质扩散,将pH几乎没有影响,并且RGO纳米片主要保持在该设想的低细胞毒性作用的膜。在另一方面,纳米材料RGO的存在加速了膜的机械稳定性的损失。然而,可以设想的是,PCL / RGO膜的逐渐退化可以促进细胞浸润,互连性,和组织形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号