首页> 外文OA文献 >Influence of Laser Energy Deposition Conditions on the Drag of A Sphere in Supersonic Flow
【2h】

Influence of Laser Energy Deposition Conditions on the Drag of A Sphere in Supersonic Flow

机译:激光能量沉积条件对超声波流动中球体拖曳的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present study, a two-dimensional axisymmetry unsteady numerical simulation that implements high-frequency laser energy deposition was performed to understand its influence on drag reduction in supersonic flow. The energy deposition was modeled as the increase of the temperature inside the focal region. The drag reduction characteristics were investigated by changing the frequency of the deposition, the distance between the focus of the deposition and the body, and the power of the laser. The results showed that drag could be reduced by 60% when there was a single energy deposition. As the operating frequency increased, up to 70% drag reduction was obtained. When the laser energy was deposed more frequently than 75 kHz, the normalized drag converged regardless of the deposition scenario, which resulted from the multiple interactions between the blast wave and the reflected shock. A similar tendency was found from the results of various focal distances. According to the results of this study on the effect of the deposition energy, it is expected to achieve the same effect as with low energy by increasing the frequency of the deposition.
机译:在本研究中,进行了实现高频激光能量沉积的二维轴对称非稳态数值模拟,以了解其对超音流减阻的影响。能量沉积被建模为焦点区域内的温度的增加。通过改变沉积频率,沉积焦点与主体之间的距离以及激光的功率来研究阻力降低特性。结果表明,当有一次能量沉积时,阻力可以减少60%。随着工作频率的增加,获得了高达70%的阻力减少。当激光能量频率比75 kHz更频繁时,无论沉积场景如何,归一化阻力都会收敛,这是由爆发波之间的多个相互作用和反射冲击产生的沉积场景。从各种焦距的结果中发现了类似的趋势。根据该研究的结果对沉积能量的影响,预期通过增加沉积频率来实现与低能量相同的效果。

著录项

  • 作者

    Seihwan Kim; Hyoung Jin Lee;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号