首页> 外文OA文献 >Classification modeling based on surface porosity for the grading of natural cork stoppers for quality wines
【2h】

Classification modeling based on surface porosity for the grading of natural cork stoppers for quality wines

机译:基于表面孔隙度的分类建模,用于高品质葡萄酒的天然软木塞分级

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

tThe natural cork stoppers are commercially graded into quality classes according with the homogeneity of theexternal surface. The underlying criteria for this classification are subjective without quantified criteria and standardsdefined by cork industry or consumers. Image analysis was applied to premium, good and standard quality classes tocharacterize the surface of the cork stoppers and stepwise discriminant analysis (SDA) was used to build predictiveclassification models. The final goal is to analyze the contribution of each porosity feature and propose an algorithmfor cork stoppers quality class classification. This study provides the knowledge based on a large sampling to anaccurate grading of natural cork stoppers.In average all the models presented accuracy in relation to the commercial classification over 68% with a highermismatch in the mid-quality range. Color showed an important discriminating power, increasing the accuracy in10%. The main discriminant features were porosity coefficient and color variables, calculated for the lateral surface. Aquality classification algorithm was presented based on a simplified model with an accuracy of 75%. The classificationbased on color vision systems can ensure improved quality class uniformity and a higher transparency in trade
机译:根据外立表面的均匀性,自然软木塞停车器是商业分化为质量等级。该分类的基本标准是无限制的标准和由软木行业或消费者的标准规定的主观性。将图像分析应用于溢价,良好的和标准品质的课程,可以将软木塞表面的表面和逐步判别分析(SDA)用于构建预测的分类模型。最终目标是分析每个孔隙度特征的贡献,并提出了一种软木塞STOPERS质量级别分类的算法。本研究提供了基于对自然软木塞的严重评分的大型抽样的知识。平均所有模型在中间质量范围内具有68%的商业分类,呈现了68%的准确性。颜色显示出一个重要的辨别力,提高了10%的准确性。主要判别特征是孔隙度系数和颜色变量,用于侧表面。基于简化模型提出了水平分类算法,精度为75%。在彩色视觉系统上的分类可以确保提高质量阶级均匀性和贸易透明度更高

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号