首页> 外文OA文献 >Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
【2h】

Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

机译:基于动态神经网络的风能转换系统鲁棒故障检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
机译:风能转换系统(WECS)中发生故障的发生是不可避免的。为了在适当的时间检测发生的故障,避免繁重的经济损失,确保安全的系统运行,防止损坏相邻的相关系统,并促进及时修复失败的组件;需要故障检测系统(FDS)。经常性的神经网络(RNN)在FDS中获得了明显的位置,并且已广泛用于复杂动力系统的建模。设计FDS的一种方法是准备仿真正常系统行为的动态神经模型。通过比较真实系统的输出和神经模型,可以识别故障的发生率。在本文中,通过利用包含WECS的机械和电气组件的全面动态模型,使用动态RNN建议FDS。所提出的FDS检测发电机角速度传感器,俯仰角传感器和俯仰致动器的故障。通过采用自适应阈值来实现FD的鲁棒性。仿真结果表明,该方案能够很快检测故障,并且它具有非常低的虚假和错过警报率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号