首页> 外文OA文献 >DIANA: A Machine Learning Mechanism for Adjusting the TDD Uplink-Downlink Configuration in XG-PON-LTE Systems
【2h】

DIANA: A Machine Learning Mechanism for Adjusting the TDD Uplink-Downlink Configuration in XG-PON-LTE Systems

机译:戴安娜:一种用于调整XG-PON-LTE系统中TDD上行链路配置的机器学习机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern broadband hybrid optical-wireless access networks have gained the attention of academia and industry due to their strategic advantages (cost-efficiency, huge bandwidth, flexibility, and mobility). At the same time, the proliferation of Software Defined Networking (SDN) enables the efficient reconfiguration of the underlying network components dynamically using SDN controllers. Hence, effective traffic-aware schemes are feasible in dynamically determining suitable configuration parameters for advancing the network performance. To this end, a novel machine learning mechanism is proposed for an SDN-enabled hybrid optical-wireless network. The proposed architecture consists of a 10-gigabit-capable passive optical network (XG-PON) in the network backhaul and multiple Long Term Evolution (LTE) radio access networks in the fronthaul. The proposed mechanism receives traffic-aware knowledge from the SDN controllers and applies an adjustment on the uplink-downlink configuration in the LTE radio communication. This traffic-aware mechanism is capable of determining the most suitable configuration based on the traffic dynamics in the whole hybrid network. The introduced scheme is evaluated in a realistic environment using real traffic traces such as Voice over IP (VoIP), real-time video, and streaming video. According to the obtained numerical results, the proposed mechanism offers significant improvements in the network performance in terms of latency and jitter.
机译:由于其战略优势(成本效益,巨大的带宽,灵活性和移动性),现代宽带混合动力车光纤无线接入网络赢得了学术界和行业的关注。同时,软件定义网络(SDN)的增殖使得能够使用SDN控制器动态地重新配置底层网络组件。因此,有效的流量感知方案在动态地确定适当的配置参数时是可行的,用于推进网络性能。为此,提出了一种用于支持SDN的混合光纤光纤网络的新型机器学习机制。所提出的架构包括在网络回程中的10千兆位被无源光网络(XG-PON)和Fronthaul中的多个长期演进(LTE)无线电接入网络组成。所提出的机制从SDN控制器接收到流量意识知识,并在LTE无线电通信中应用对上行链路配置的调整。这种流量感知机制能够基于整个混合网络中的业务动态来确定最合适的配置。介绍的方案在使用实际交通迹线(如IP语音(VoIP),实时视频和流视频中的实际交通迹线中评估了逼真的环境。根据所得的数值结果,所提出的机制在延迟和抖动方面对网络性能的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号