首页> 外文OA文献 >Improving Conductivity in Nano-Conduit Flows by Using Thermal Pulse-Induced Brownian Motion: A Spectral Impulse Intensity Approach
【2h】

Improving Conductivity in Nano-Conduit Flows by Using Thermal Pulse-Induced Brownian Motion: A Spectral Impulse Intensity Approach

机译:通过使用热脉冲诱导的布朗运动提高纳米导管流动的电导率:一种光谱脉冲强度方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Inter-particle and particle-wall connectivity in suspension flow has profound effects on thermal and electrical conductivity. The spectral impulse generation and the imparting of kinetic energy on the particles is shown through a mathematical analysis to be effective as a means of achieving an approximate equivalent of a Langevin thermostat. However, with dilute suspensions, the quadratic form of the thermal pulse spectra is modified with a damping coefficient to achieve the desired Langevin value. With the dense suspension system, the relaxation time is calculated from the non-linear differential equation, and the fluid properties were supported by the viscosity coefficient. A “smoothed” pulse is used for each time-step of the flow simulation to take care of the near-neighbor interactions of the adjacent particles. An approximate optimal thermostat is achieved when the number of extra pulses introduced within each time step is found to be nearly equal to the co-ordination number of each particle within the assembly. Furthermore, the ratio of the particle kinetic energy and the thermal energy imparted is found to be never quite equal to unity, as they both depend upon the finite values of the pulse duration and the relaxation time.
机译:在悬浮液中流动颗粒间和颗粒壁连接有导热和导电性有深远的影响。光谱冲动产生和动能的颗粒上的赋予通过数学分析证明是有效的,作为实现朗之万恒温器的近似等效的手段。然而,用稀悬浮液中,热脉冲频谱的二次形式进行改性的阻尼系数以实现期望的朗之万的值。与致密的​​悬挂系统,该弛豫时间是从非线性微分方程来计算,并且所述流体性质通过粘性系数的支持。 A“平滑化”脉冲被用于流动模拟的每个时间步取相邻颗粒的近邻相互作用的护理。当发现每个时间步长内引入额外的脉冲数恒温器实现的近似最优为几乎等于内的组件中的每个粒子的配合数。此外,粒子的动能和施加的热能的比率被发现是从来没有完全等于单位,因为它们都依赖于脉冲宽度和弛豫时间的有限值。

著录项

  • 作者

    Ugur Tuzun;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号