首页> 外文OA文献 >Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland
【2h】

Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland

机译:结合多时令高中分辨率卫星图像的农田和草原包裹相关绘图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key factor in the implementation of productive and sustainable cultivation procedures isudthe frequent and area-wide monitoring of cropland and grassland. In particular, attention is focused onudassessing the actual status, identifying basic trends and mitigating major threats with respect to landuseudintensity and its changes in agricultural and semi-natural areas. Here, multi-seasonal analysesudbased on satellite Earth observation (EO) data can provide area-wide, spatially detailed and up-to-dateudgeo-information on the distribution and intensity of land use in agricultural and grassland areas. Thisudstudy introduces the combined use of multi-seasonal high (HR) and medium resolution (MR) satelliteudimagery for both a land parcel-based determination of crop types as well as a cropland and grasslanduddifferentiation, respectively. First, HR IRS-P6 LISS-3 imagery is used to delineate the field parcels inudpotential agricultural and grassland areas. Next, a stack of seasonality indices is generated based on 5udimage acquisitions (i.e., two LISS scenes and three MR IRS-P6 AWiFS scenes). Finally, a C5.0 treeudclassifier is applied to identify main crop types and grassland based on the input imagery and theudderived seasonality indices. The classifier is trained using sample points provided by the EuropeanudLand Use/Cover Area Frame Survey (LUCAS). Experimental results for a test area in Germany assessudthe effectiveness of the proposed approach and demonstrate that a multi-scale and multi-temporaludanalysis of satellite data can provide spatially detailed and thematically accurate geo-information onudcrop types and the cropland-grassland distribution, respectively.
机译:培养和可持续培养程序实施的关键因素是 ud的农田和草原的频繁和领域。特别是,注意力集中在 udassess的实际状态,确定了基本趋势和减轻了对土地利用的主要威胁以及农业和半自然区域的变化。在这里,在卫星地球观测(EO)数据上的多季节分析 UDBASED可以提供关于农业和草原地区土地利用分布和强度的区域广泛,空间详细和最新的 Udgeo-Information。这 Udstudy介绍了多季节高(HR)和中分辨率(MR)卫星 UDIMAGERY的结合使用,分别用于土地包裹的作物类型以及农田和草原 uddfifferiation。首先,人力资源IRS-P6 Liss-3图像用于描绘 Udpotential农业和草原地区的现场包裹。接下来,基于5 UdImage采集(即,两个Liss场景和三个MR IRS-P6 APS场景)生成一堆季节性指数。最后,应用C5.0树 UdClassifier以根据输入图像和 Udderived季节性指数识别主要作物类型和草地。分类器使用欧洲 udland使用/覆盖区域框架调查(Lucas)提供的采样点进行培训。德国测试区的实验结果评估 udthe拟议方法的有效性,并证明了多级和多颞卫星数据的Udan分析可以提供空间详细的和主题准确的地理信息,就 udcrop类型和农田 - 草地分布分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号