首页> 外文OA文献 >Interfacial Model and Characterization for Nanoscale ReB2/TaN Multilayers at Desired Modulation Period and Ratios: First-Principles Calculations and Experimental Investigations
【2h】

Interfacial Model and Characterization for Nanoscale ReB2/TaN Multilayers at Desired Modulation Period and Ratios: First-Principles Calculations and Experimental Investigations

机译:纳米级Reb2 / TAN多层在所需调制周期和比率的界面模型及表征:第一原理计算和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interfacial structure of ReB2/TaN multilayers at varied modulation periods (Λ) and modulation ratios (tReB2:tTaN) was investigated using key experiments combined with first-principles calculations. A maximum hardness of 38.7 GPa occurred at Λ = 10 nm and tReB2:tTaN = 1:1. The fine nanocrystalline structure with small grain sizes remained stable for individual layers at Λ= 10 nm and tReB2:tTaN = 1:1. The calculation of the interfacial structure model and interfacial energy was performed using the first principles to advance the in-depth understanding of the relationship between the mechanical properties, residual stresses, and the interfacial structure. The B-Ta interfacial configuration was calculated to have the highest adsorption energy and the lowest interfacial energy. The interfacial energy and adsorption energy at different tReB2:tTaN followed the same trend as that of the residual stress. The 9ReB2/21TaN interfacial structure in the B-Ta interfacial configuration was found to be the most stable interface in which the highest adsorption energy and the lowest interfacial energy were obtained. The chemical bonding between the neighboring B atom and the Ta atom in the interfaces showed both covalency and iconicity, which provided a theoretical interpretation of the relationship between the residual stress and the stable interfacial structure of the ReB2/TaN multilayer.
机译:使用关键实验研究了各种调制周期(λ)和调制比(TREB2:TTAN)的REB2 / TAN多层的界面结构和调制比(TREB2:TTAN)与第一原理计算相结合。在λ= 10nm和ttan2:ttan = 1:1时发生38.7gPa的最大硬度。对于小颗粒尺寸的细纳米晶体结构对于λ= 10nm和ttab2:Ttan = 1:1的个体层保持稳定。使用第一个原理进行界面结构模型和界面能量的计算,以提高对机械性能,残余应力和界面结构之间的关系的深入理解。计算B-TA界面配置以具有最高的吸附能量和最低的界面能量。不同TREB2的界面能量和吸附能量:TTAN跟随与残余应力相同的趋势。发现B-TA界面配置中的9REB2 / 21TAN界面结构是最稳定的界面,其中获得了最高吸附能量和最低界面能量。相邻B原子和界面中的Ta原子之间的化学键合显示了共价和象限性,这提供了对REB2 / TAN多层的稳定界面结构之间的关系的理论解释。

著录项

  • 作者

    Shangxiao Jin; Dejun Li;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号