首页> 外文OA文献 >HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN
【2h】

HYPERSPECTRAL IMAGE DENOISING USING MULTIPLE LINEAR REGRESSION AND BIVARIATE SHRINKAGE WITH 2-D DUAL-TREE COMPLEX WAVELET IN THE SPECTRAL DERIVATIVE DOMAIN

机译:高光谱图像去噪使用多个线性回归和与光谱衍生域中的2-D双树复杂小波的双线性收缩

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a new denoising method is proposed for hyperspectral remote sensing images, and tested on both the simulated and the real-life datacubes. Predicted datacube of the hyperspectral images is calculated by multiple linear regression in the spectral domain based on the strong spectral correlation of the useful signal and the inter-band uncorrelation of the random noise terms in hyperspectral images. A two dimensional dual-tree complex wavelet transform is performed in the spectral derivative domain, where the noise level is elevated temporarily to avoid signal deformation during the wavelet denoising, and then the bivariate shrinkage is used to shrink the wavelet coefficients. Simulated experimental results demonstrate that the proposed method obtains better results than the other denoising methods proposed in the reference, improves the signal to noise ratio up to 0.5dB to 10dB. The real-life data experiment shows that the proposed method is valid and effective.
机译:本文提出了一种新的去噪方法,用于高光谱遥感图像,并在模拟和真实寿命数据库上进行测试。基于有用信号的强光谱相关性和高光谱图像中随机噪声术语的随机噪声术语的强烈频谱相关性,通过频谱域中的多元线性回归来计算高光谱图像的预测数据。在光谱衍生域中执行二维双树复杂小波变换,其中噪声水平暂时升高以避免在小波去噪期间的信号变形,然后使用双相加收缩来缩小小波系数。模拟实验结果表明,所提出的方法获得比参考中提出的其他去噪方法更好的结果,将信号与噪声比率高达0.5dB至10dB。现实生活数据实验表明,所提出的方法有效且有效。

著录项

  • 作者

    Lei Sun; Dong Xu;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 por
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号