首页> 外文OA文献 >GIF Video Sentiment Detection Using Semantic Sequence
【2h】

GIF Video Sentiment Detection Using Semantic Sequence

机译:GIF视频情绪检测使用语义序列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the development of social media, an increasing number of people use short videos in social media applications to express their opinions and sentiments. However, sentiment detection of short videos is a very challenging task because of the semantic gap problem and sequence based sentiment understanding problem. In this context, we propose a SentiPair Sequence based GIF video sentiment detection approach with two contributions. First, we propose a Synset Forest method to extract sentiment related semantic concepts from WordNet to build a robust SentiPair label set. This approach considers the semantic gap between label words and selects a robust label subset which is related to sentiment. Secondly, we propose a SentiPair Sequence based GIF video sentiment detection approach that learns the semantic sequence to understand the sentiment from GIF videos. Our experiment results on GSO-2016 (GIF Sentiment Ontology) data show that our approach not only outperforms four state-of-the-art classification methods but also shows better performance than the state-of-the-art middle level sentiment ontology features, Adjective Noun Pairs (ANPs).
机译:随着社交媒体的发展,越来越多的人在社交媒体应用中使用短视频来表达他们的意见和情绪。然而,由于语义缺口问题和基于序列的情绪了解问题,短视的情感检测是一个非常具有挑战性的任务。在这方面,我们提出了一种基于Sentipair序列的GIF视频情绪检测方法,具有两个贡献。首先,我们提出了一个Synste Forest方法来提取来自Wordnet的情绪相关的语义概念,以构建一个强大的SentipAir标签集。该方法考虑标签单词之间的语义差距,并选择与情绪相关的强大标签子集。其次,我们提出了一种基于Sentipair序列的GIF视频情绪检测方法,了解语义序列以了解来自GIF视频的情绪。我们的实验结果对GSO-2016(GIF情绪本体论)数据显示,我们的方法不仅优于四种最先进的分类方法,而且表现出比最先进的中级情绪本体特征更好的性能,形容词名词对(ANP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号