首页> 外文OA文献 >Colour reconstruction of underwater images
【2h】

Colour reconstruction of underwater images

机译:水下图像的颜色重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objects look very different in the underwater environment compared to their appearance in sunlight. Images with correct colouring simplify the detection of underwater objects and may allow the use of visual SLAM algorithms developed for land-based robots underwater. Hence, image processing is required. Current algorithms focus on the colour reconstruction of scenery at diving depth where different colours can still be distinguished. At greater depth this is not the case. In this study it is investigated whether machine learning can be used to transform image data. First, laboratory tests are performed using a special light source imitating underwater lighting conditions. It is shown that the k-nearest neighbour method and support vector machines yield excellent results. Based on these results an experimental verification is performed under severe conditions in murky water of a diving basin. It is shown that the k-nearest neighbour method gives very good results for small distances between the object and the camera and for small water depths in the red channel. For higher distances, water depths, and for the other colour channels support vector machines are the best choice for the reconstruction of the colour as seen under white light from the underwater images.
机译:物体看起来在水下环境相比,他们在阳光外观非常不同。以正确的着色图像简化水下物体的检测,并且可以允许使用用于陆基水下机器人视觉开发SLAM算法。因此,需要图像处理。当前算法着眼于在潜水深度的颜色重建的风景,其中不同的颜色仍可以区分。在更大的深度,这是情况并非如此。在这项研究中进行了研究学习机是否可以用来变换的图像数据。首先,实验室试验使用的是特殊的光源模仿水下照明条件下进行。结果表明,该k-最近邻方法和支持向量机得到优异的结果。基于这些结果是严重的条件下,在潜水盆地的阴暗的水进行的实验验证。结果表明,该k-最近邻方法给出了对象和摄像机之间以及在红色通道小的水深小的距离非常好的结果。对于较高的距离,水的深度,且用于另一颜色通道支持向量机是用于在白光下所见从水下图像的颜色的重建的最佳选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号