首页> 外文OA文献 >RazorNet: Adversarial Training and Noise Training on a Deep Neural Network Fooled by a Shallow Neural Network
【2h】

RazorNet: Adversarial Training and Noise Training on a Deep Neural Network Fooled by a Shallow Neural Network

机译:razornet:浅层神经网络欺骗的深层神经网络的对抗训练和噪音训练

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we propose ShallowDeepNet, a novel system architecture that includes a shallow and a deep neural network. The shallow neural network has the duty of data preprocessing and generating adversarial samples. The deep neural network has the duty of understanding data and information as well as detecting adversarial samples. The deep neural network gets its weights from transfer learning, adversarial training, and noise training. The system is examined on the biometric (fingerprint and iris) and the pharmaceutical data (pill image). According to the simulation results, the system is capable of improving the detection accuracy of the biometric data from 1.31% to 80.65% when the adversarial data is used and to 93.4% when the adversarial data as well as the noisy data are given to the network. The system performance on the pill image data is increased from 34.55% to 96.03% and then to 98.2%, respectively. Training on different types of noise can benefit us in detecting samples from unknown and unseen adversarial attacks. Meanwhile, the system training on the adversarial data as well as noisy data occurs only once. In fact, retraining the system may improve the performance further. Furthermore, training the system on new types of attacks and noise can help in enhancing the system performance.
机译:在这项工作中,我们提出了一个包括浅层和深神经网络的新型系统架构。浅神经网络具有数据预处理和产生对抗样品的义务。深度神经网络具有理解数据和信息的义务以及检测对抗性样本。深度神经网络从转移学习,对抗性训练和噪音训练中获得其重量。在生物识别(指纹和虹膜)和药物数据(药片图像)上检查系统。根据仿真结果,当使用对抗数据时,当使用对抗数据时,该系统能够将生物识别数据的检测精度从1.31%提高到8.31%至80.65%,并且当对网络提供对抗数据以及嘈杂的数据时93.4% 。丸剂图像数据上的系统性能从34.55%增加到96.03%,然后分别增加到98.2%。对不同类型噪声的培训可以使我们受益于检测来自未知和看不见的对抗性攻击的样本。同时,对对抗数据以及嘈杂数据仅发生一次的系统培训。实际上,再培训系统可以进一步提高性能。此外,在新类型的攻击和噪声上培训系统可以帮助提高系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号