首页> 外文OA文献 >Distributed consensus strong tracking filter for wireless sensor networks with model mismatches
【2h】

Distributed consensus strong tracking filter for wireless sensor networks with model mismatches

机译:具有模型不匹配的无线传感器网络的分布式共识强跟踪滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A distributed consensus strong tracking filter is developed and investigated for the target tracking problems with model mismatches in wireless sensor networks. This novel approach is based on basic strong tracking filter which is one of the most efficient and robust state estimation algorithms for model mismatches. However, strong tracking filter encounters two fundamental problems in wireless sensor networks: communication congestion and scalability. This work is to apply a distributed way of strong tracking filter using the consensus filter to adjust the time-variant fading factor in a distributed manner, which makes the residual error sequences of all sensors keep orthogonality with the state estimation errors. Theoretical analysis shows that the calculation flow diagram of distributed consensus strong tracking filter is as complex as that of distributed Kalman filtering. Although the message of distributed consensus strong tracking filter is approximately twice the size of the message of distributed Kalman filtering, distributed consensus strong tracking filter has better accuracy in target tracking with model mismatches. Finally, simulation results are provided to show that the state estimation of distributed consensus strong tracking filter has better accuracy and robustness against target mutation than the traditional distributed Kalman filtering when the tracker is described by current statistic model.
机译:开发并调查了分布式共识强跟踪滤波器,用于无线传感器网络中模型不匹配的目标跟踪问题。这种新方法基于基本的强大跟踪滤波器,是模型不匹配的最有效和稳健的状态估计算法之一。然而,强大的跟踪过滤器遇到无线传感器网络中的两个基本问题:通信拥塞和可扩展性。这项工作是使用共识滤波器应用强大的跟踪滤波器的分布式方式,以分布式方式调整时变衰落因子,这使得所有传感器的残余误差序列保持与状态估计误差的正交性。理论分析表明,分布式共识强滤波器的计算流程图与分布式卡尔曼滤波一样复杂。虽然分布式共识的消息强大的跟踪过滤器大约是分布式卡尔曼滤波的信息大小的两倍,但分布式共识强的跟踪滤波器在具有模型不匹配的目标跟踪中具有更好的准确性。最后,提供了模拟结果,表明分布式共识强的跟踪滤波器的状态估计比当前统计模型描述了跟踪器时的传统分布式卡尔曼滤波具有更好的准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号