首页> 外文OA文献 >MULTI OBJECT DETECTION AND TRACKING USING OPTICAL FLOW DENSITY – HUNGARIAN KALMAN FILTER (OFD - HKF) ALGORITHM FOR VEHICLE COUNTING
【2h】

MULTI OBJECT DETECTION AND TRACKING USING OPTICAL FLOW DENSITY – HUNGARIAN KALMAN FILTER (OFD - HKF) ALGORITHM FOR VEHICLE COUNTING

机译:使用光学流量密度 - 匈牙利卡尔曼滤波器(OFD - HKF)算法的多目标检测和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intelligent Transportation Systems (ITS) is one of the most developing research topic along with growing advance technology and digital information. The benefits of research topic on ITS are to address some problems related to traffic conditions. Vehicle detection and tracking is one of the main step to realize the benefits of ITS. There are several problems related to vehicles detection and tracking. The appearance of shadow, illumination change, challenging weather, motion blur and dynamic background such a big challenges issue in vehicles detection and tracking. Vehicles detection in this paper using the Optical Flow Density algorithm by utilizing the gradient of object displacement on video frames. Gradient image feature and HSV color space on Optical flow density guarantee the object detection in illumination change and challenging weather for more robust accuracy. Hungarian Kalman filter algorithm used for vehicle tracking. Vehicle tracking used to solve miss detection problems caused by motion blur and dynamic background. Hungarian kalman filter combine the recursive state estimation and optimal solution assignment. The future positon estimation makes the vehicles detected although miss detection occurance on vehicles. Vehicles counting used single line counting after the vehicles pass that line. The average accuracy for each process of vehicles detection, tracking, and counting were 93.6%, 88.2% and 88.2% respectively.
机译:智能交通系统(其)是发展课题中最开发的研究主题之一,以及增长的先进技术和数字信息。研究主题的好处是解决与交通状况有关的一些问题。车辆检测和跟踪是实现其益处的主要步骤之一。有几个与车辆检测和跟踪有关的问题。影子,照明变化,挑战天气,运动模糊和动态背景如此重要的挑战在车辆检测和跟踪方面的出现。通过利用视频帧上的物体位移的梯度,使用光学流密算法检测本文的车辆。梯度图像特征和光流密度的HSV颜色空间保证了对象检测在照明变化和挑战天气中,以获得更强大的准确性。匈牙利卡尔曼滤波器算法用于车辆跟踪。车辆跟踪用于解决运动模糊和动态背景引起的错过检测问题。匈牙利卡尔曼滤波器结合了递归状态估计和最佳解决方案分配。未来的阳极估计使得检测到的车辆尽管错过了车辆上的检测发生。在车辆通过该线路后,车辆计算使用单线计数。每种车辆检测,跟踪和计数过程的平均精度分别为93.6%,88.2%和88.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号