首页> 外文OA文献 >Evaluation of the Quadri-Planes Method in Computer-Aided Diagnosis of Breast Lesions by Ultrasonography: Prospective Single-Center Study
【2h】

Evaluation of the Quadri-Planes Method in Computer-Aided Diagnosis of Breast Lesions by Ultrasonography: Prospective Single-Center Study

机译:超声检查对乳房病变的计算机辅助诊断中的Quadri-Planes方法评价:前瞻性单中心研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundComputer-aided diagnosis (CAD) is a tool that can help radiologists diagnose breast lesions by ultrasonography. Previous studies have demonstrated that CAD can help reduce the incidence of missed diagnoses by radiologists. However, the optimal method to apply CAD to breast lesions using diagnostic planes has not been assessed. ObjectiveThe aim of this study was to compare the performance of radiologists with different levels of experience when using CAD with the quadri-planes method to detect breast tumors. MethodsFrom November 2018 to October 2019, we enrolled patients in the study who had a breast mass as their most prominent symptom. We assigned 2 ultrasound radiologists (with 1 and 5 years of experience, respectively) to read breast ultrasonography images without CAD and then to perform a second reading while applying CAD with the quadri-planes method. We then compared the diagnostic performance of the readers for the 2 readings (without and with CAD). The McNemar test for paired data was used for statistical analysis. ResultsA total of 331 patients were included in this study (mean age 43.88 years, range 17-70, SD 12.10), including 512 lesions (mean diameter 1.85 centimeters, SD 1.19; range 0.26-9.5); 200/512 (39.1%) were malignant, and 312/512 (60.9%) were benign. For CAD, the area under the receiver operating characteristic curve (AUC) improved significantly from 0.76 (95% CI 0.71-0.79) with the cross-planes method to 0.84 (95% CI 0.80-0.88; P<.001) with the quadri-planes method. For the novice reader, the AUC significantly improved from 0.73 (95% CI 0.69-0.78) for the without-CAD mode to 0.83 (95% CI 0.80-0.87; P<.001) for the combined-CAD mode with the quadri-planes method. For the experienced reader, the AUC improved from 0.85 (95% CI 0.81-0.88) to 0.87 (95% CI 0.84-0.91; P=.15). The kappa indicating consistency between the experienced reader and the novice reader for the combined-CAD mode was 0.63. For the novice reader, the sensitivity significantly improved from 60.0% for the without-CAD mode to 79.0% for the combined-CAD mode (P=.004). The specificity, negative predictive value, positive predictive value, and accuracy improved from 84.9% to 87.8% (P=.53), 76.8% to 86.7% (P=.07), 71.9% to 80.6% (P=.13), and 75.2% to 84.4% (P=.12), respectively. For the experienced reader, the sensitivity improved significantly from 76.0% for the without-CAD mode to 87.0% for the combined-CAD mode (P=.045). The NPV and accuracy moderately improved from 85.8% and 86.3% to 91.0% (P=.27) and 87.0% (P=.84), respectively. The specificity and positive predictive value decreased from 87.4% to 81.3% (P=.25) and from 87.2% to 93.0% (P=.16), respectively. ConclusionsS-Detect is a feasible diagnostic tool that can improve the sensitivity, accuracy, and AUC of the quadri-planes method for both novice and experienced readers while also improving the specificity for the novice reader. It demonstrates important application value in the clinical diagnosis of breast cancer. Trial RegistrationChiCTR.org.cn 1800019649; http://www.chictr.org.cn/showproj.aspx?proj=33094
机译:背景计算机辅助诊断(CAD)是一种可以帮助放射科医生通过超声检查诊断乳腺病变的工具。以前的研究表明,CAD可以帮助减少放射科医生错过诊断的发病率。然而,尚未评估使用诊断平面将CAD应用于乳房病变的最佳方法。本研究的目的是在使用CAD与Quadri-Planes方法中使用CAD以检测乳腺肿瘤时比较放射科学家的表现。方法从2018年11月到2019年10月,我们注册了患者,患者患有乳房肿块作为最突出的症状。我们分配了2位超声放射科医生(分别有1和5年的经验),以读取没有CAD的乳房超声图像,然后在用Quadri-Planes方法应用CAD的同时执行第二次读数。然后,我们将读者的诊断性能与2读数(无关和CAD)进行比较。配对数据的McNemar测试用于统计分析。结果总共331名患者纳入本研究(平均年龄为43.88岁,范围17-70,SD 12.10),包括512个病变(平均直径1.85厘米,SD 1.19;范围0.26-9.5); 200/512(39.1%)是恶性的,312/512(60.9%)是良性的。对于CAD,接收器操作特征曲线(AUC)下的区域从0.76(95%CI 0.71-0.79)显着改善,横穿速度为0.84(95%CI 0.80-0.88; P <.001) -Planes方法。对于新手读者,AUC从0.73(95%CI 0.69-0.78)显着提高到无需CAD模式至0.83(95%CI 0.80-0.87; P <.001),其中组合CAD模式与Quadri-飞机方法。对于经验丰富的读者,AUC从0.85(95%CI 0.81-0.88)提高至0.87(95%CI 0.84-0.91; P = .15)。表示有经验读者和组合CAD模式的新手读者之间的一致性的Kappa为0.63。对于新手读者,敏感度从无需CAD模式的60.0%显着提高到组合CAD模式的79.0%(P = .004)。特异性,消极预测值,阳性预测值和精度从84.9%提高到87.8%(p = .53),76.8%至86.7%(p = .07),71.9%至80.6%(p = .13)分别为75.2%至84.4%(p = .12)。对于经验丰富的读者,敏感度从没有CAD模式的76.0%提高到组合CAD模式的87.0%(P = .045)。 NPV和精度分别适度提高85.8%和86.3%至91.0%(P = .27)和87.0%(P = .84)。特异性和阳性预测值分别从87.4%降至81.3%(p = .25),分别为87.2%至93.0%(p = .16)。结论 - 检测是一种可行的诊断工具,可以改善新手和经验丰富的读者的Quadri-Planes方法的灵敏度,准确性和AUC,同时还提高了新手读者的特殊性。它展示了乳腺癌临床诊断中的重要应用价值。试用RegistrationChictr.org.cn 1800019649; http://www.chictr.org.cn/showproj.aspx?proj=33094.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号