首页> 外文OA文献 >Automatic Shoreline Detection from Video Images by Combining Information from Different Methods
【2h】

Automatic Shoreline Detection from Video Images by Combining Information from Different Methods

机译:通过将来自不同方法的信息组合来自动海岸线检测来自视频图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Properly registering the time evolution of the shoreline—the coastal land-water interface—is a crucial issue in coastal management, among other disciplines. Video stations have shown to be powerful low-cost tools for continuous monitoring of the coast in the last 30 years. Despite the efforts of the scientific community to get algorithms able to properly track the shoreline position from video images without human supervision, there is not yet an algorithm that can be recognized as fully satisfactory. The present work introduces a methodology to combine the results from different shoreline detection algorithms so as to obtain a smooth and very much improved result when compared to the actual shoreline. The output of the introduced methodology, which is fully automatic, includes not only the shorelines at all available times but also a measure of the quality of the obtained shoreline at each point (called self-computed error). The results from the studied beaches—located in the region of Barcelona city (Spanish Mediterranean coast)—show that such self-computed errors are in general good proxies of the actual errors. Using a certain threshold for the self-computed errors, the final computed shorelines have RMSE (Root Mean Squared Errors) that are in general smaller than 2.5 m in the great majority of analysed images, when compared to the manually digitized shorelines by three expert users. The global RMSE for all dates and beaches is of 1.8 m, with a mean bias 95% of the points.
机译:正确注册海岸线的时间演变 - 沿海地水域接口 - 是沿海管理层的一个至关重要的问题,其中包括其他学科。视频电台已显示出强大的低成本工具,以便在过去30年中持续监控海岸。尽管科学界的努力使算法能够从没有人为监督的视频图像中正确跟踪海岸线位置,但尚未将其识别出完全令人满意的算法。本工作引入了一种方法来将来自不同海岸线检测算法的结果组合,以便在与实际海岸线相比时获得平滑且非常改善的结果。引入的方法的输出是完全自动的,不仅包括在所有可用时间的海岸线,而且包括在每个点(称为自计算错误)的所获得的海岸线的质量的量度。学习海滩的成果位于巴塞罗那市(西班牙地中海海岸)的地区 - 本着这种自计算错误是一般的实际错误的良好代理。使用特定阈值的自计算错误,最终计算的堆积内具有RMSE(根均方误差),通常在大多数分析的图像中通常小于2.5米,当到三个专家用户手动数字化的海岸线时。所有日期和海滩的全球RMSE为1.8米,平均偏见95%的点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号