首页> 外文OA文献 >Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks
【2h】

Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks

机译:基于混合神经网络的中国不同水质模式的叶绿素预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most important water quality problems affecting lakes and reservoirs is eutrophication, which is caused by multiple physical and chemical factors. As a representative index of eutrophication, the concentration of chlorophyll-a has always been a key indicator monitored by environmental managers. The most influential factors on chlorophyll-a may be dependent on the different water quality patterns in lakes. In this study, data collected from 27 lakes in different provinces of China during 2009–2011 were analyzed. The self-organizing map (SOM) was first applied on the datasets and the lakes were classified into four clusters according to 24 water quality parameters. Comparison amongst the clusters revealed that Cluster I was the least polluted and at the lowest trophic level, while Cluster IV was the most polluted and at the highest trophic level. The genetic algorithm optimized back-propagation neural network (GA-BPNN) was applied to each lake cluster to select the most influential input variables for chlorophyll-a. The results of the four clusters showed that the performance of GA-BPNN was satisfied with nearly half of the input variables selected from the predictor pool. The selected factors varied for the lakes in different clusters, which indicates that the control for eutrophication should be separate for lakes in different provinces of one country.
机译:影响湖泊和储层的最重要的水质问题之一是富营养化,这是由多种物理和化学因素引起的。作为富营养化的代表性指标,叶绿素-A的浓度始终是环境管理人员监测的关键指标。叶绿素-A最有影响力的因素可能依赖于湖泊中的不同水质模式。在这项研究中,分析了2009 - 2011年在中国不同省份的27湖中收集的数据。首先在数据集上应用自组织地图(SOM),并根据24个水质参数分为四个集群。集群的比较显示,集群我是最少的污染和最低营养水平,而群集IV是最污染,最高的营养水平。遗传算法优化的反向传播神经网络(GA-BPNN)应用于每个湖群,以为叶绿素-A选择最有影响力的输入变量。四个集群的结果表明,GA-BPNN的性能满足于从预测测量池中选择的近一半的输入变量。不同簇中的湖泊各种各样的因素,这表明富营养化的控制应该是一个国家的湖泊分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号