首页> 外文OA文献 >EVALUATION OF SELECTED COST AGGREGATION METHODS ON HIGH RESOLUTION SATELLITE STEREO IMAGES
【2h】

EVALUATION OF SELECTED COST AGGREGATION METHODS ON HIGH RESOLUTION SATELLITE STEREO IMAGES

机译:高分辨率卫星立体图像中所选成本聚集方法的评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dense stereo processing requires a critical step that called cost aggregation or cost optimization. Most of the cost aggregation methods are evaluated on close range stereo images from Middlebury or KITTI datasets. While the effect of cost aggregation on high resolution satellite stereo processing has not yet been sufficiently evaluated. In this paper, three typical cost aggregation methods together with another approach which is a combination of these methods are evaluated on high resolution satellite stereo images and then are compared with LiDAR ground truth. These methods including Semi-Global Matching (SGM), Guided Filtering (GF), iterative GF (IGF), and SGM followed by GF (SGM-GF) with Census and Zero Normalized Cross Correlation (ZNCC) cost functions. Although the Census cost function has a good performance on the border of the objects and low blurring effects, the results of both cost functions, i.e. Census and ZNCC, have same treatment on all stereo methods. Also, in order to make an impartial assessment, for all stereo methods, we do not perform any disparity map refinement. The bad-pixel criteria with an absolute difference height error greater than 2 meters for SGM, GF, IGF, and SGM-GF methods is 36.7%, 34.8%, 33.8%, and 28.6% respectively. Also, the Normalized Median Absolute Difference (NMAD) error for SGM, GF, IGF, and SGM-GF is 1.29, 1.15, 1.06, and 0.94 meters, respectively. Overall, the experimental results on WV III stereo images demonstrate that the SGM method has lower accuracy and SGM-GF method is accurate than other methods.
机译:密集的立体声处理需要一个称为成本聚集或成本优化的关键步骤。大多数成本聚合方法在来自嗜来自跨伯利或基蒂数据集的近距离立体声图像上进行评估。虽然成本聚集对高分辨率卫星立体处理的影响尚未得到充分评估。在本文中,在高分辨率卫星立体图像中评估了三种典型的成本聚集方法与这些方法的组合的组合,然后与LIDAR地面真理进行比较。这些方法包括半全局匹配(SGM),引导滤波(GF),迭代GF(IGF)和SGM,其次是GF(SGM-GF),具有人口普查和零标准化互相关(ZNCC)成本函数。虽然人口普查成本函数对物体边界具有良好的性能和低模糊效果,但成本函数的结果,即人口普查和ZNCC,对所有立体方法都有相同的处理。此外,为了使所有立体声方法进行公正的评估,我们不会执行任何差异地图细化。对于SGM,GF,IGF和SGM-GF方法的绝对差异高度误差的差异差值标准分别为36.7%,34.8%,33.8%和28.6%。此外,SGM,GF,IGF和SGM-GF的归一化中值绝对差(NMAD)误差分别为1.29,1.15,1.06和0.94米。总体而言,WV III立体声图像上的实验结果表明,SGM方法具有较低的精度,SGM-GF方法比其他方法精确。

著录项

  • 作者

    N. Tatar; H. Arefi;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号