首页> 外文OA文献 >Super Resolution with Kernel Estimation and Dual Attention Mechanism
【2h】

Super Resolution with Kernel Estimation and Dual Attention Mechanism

机译:超级分辨率,具有内核估计和双重关注机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convolutional Neural Networks (CNN) have led to promising performance in super-resolution (SR). Most SR methods are trained and evaluated on predefined blur kernel datasets (e.g., bicubic). However, the blur kernel of real-world LR image is much more complex. Therefore, the SR model trained on simulated data becomes less effective when applied to real scenarios. In this paper, we propose a novel super resolution framework based on blur kernel estimation and dual attention mechanism. Our network learns the internal relations from the input image itself, thus the network can quickly adapt to any input image. We add the blur kernel estimation structure into the network, correcting the inaccurate blur kernel to generate high quality images. Meanwhile, we propose a dual attention mechanism to restore the texture details of the image, adaptively adjusting the features of the image by considering the interdependencies both in channel and spatial. The combination of blur kernel estimation and attention mechanism makes our network perform well for complex blur images in practice. Extensive experiments show that our method (KASR) achieves promising accuracy and visual improvements against most existing methods.
机译:卷积神经网络(CNN)导致了超级分辨率(SR)的有希望的性能。大多数SR方法训练和评估预定义的模糊内核数据集(例如,Bicubic)。然而,真实世界的LR图像的模糊内核更复杂。因此,在应用于实际场景时,在模拟数据上培训的SR模型变得较低。在本文中,我们提出了一种基于模糊内核估计和双重关注机制的新型超分辨率框架。我们的网络从输入图像本身学习内部关系,因此网络可以快速适应任何输入图像。我们将模糊内核估计结构添加到网络中,纠正不准确的模糊内核生成高质量图像。同时,我们提出了一种双重关注机制来恢复图像的纹理细节,通过考虑信道和空间中的相互依赖性,自适应地调整图像的特征。模糊内核估计和注意机制的组合使我们的网络在实践中对复杂的模糊图像表现良好。广泛的实验表明,我们的方法(KASR)实现了对大多数现有方法的有希望的准确性和视觉改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号