首页> 外文OA文献 >A Comparison of the Use of Artificial Neural Networks, Fractal Time Series and Fractal Neural Networks in Financial Forecasts
【2h】

A Comparison of the Use of Artificial Neural Networks, Fractal Time Series and Fractal Neural Networks in Financial Forecasts

机译:人工神经网络,分形时间序列和分形神经网络在财务预测中的使用比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Effective prediction of future financial states has been a major quest for groups ranging from national governments to individual investors. The size, diversity and complexity of financial markets make traditional statistical methods ineffective in predicting beyond a very short time frame. Alternative models using artificial neural networks and fractal time series have had better results in long-term predictions, but still do not work in all situations. This dissertation combined features of artificial neural networks and fractal time series to create a fractal neural network. Fractals exhibit repetitive patterns when a unit is broken down into its components. This similarity property was used to create a fractal neural network that could be broken out into separate, smaller neural networks. The recurring nature of the fractal pattern indicates that phenomena exhibiting repetitive patterns may be effectively modeled with fractal neural networks. Computer models of fractal time series, artificial neural networks and fractal neural networks were constructed and used to analyze and predict the exchange rate between the Deutschemark and the US Dollar and between the US dollar and the British Pound. Results confirmed that the exchange rates for 1994 to 1995 exhibit fractal patterns. Three layer artificial neural networks and fractal neural networks were constructed, trained on the 1994 data, and used to predict exchange rates for the first half of 1995. The number of correct predictions of the direction of change of the exchange rates calculated by the fractal neural network exceeded those produced by the artificial neural network for weekly Deutschemark and daily and weekly Pound exchange rates. When the predicted values were compared to actual values and used to form an investment strategy, the fractal network consistently produced a profit that exceeded that of the artificial neural network.
机译:对未来财务状况的有效预测一直是从国家政府到个人投资者等群体的主要追求。金融市场的规模,多样性和复杂性使传统的统计方法无法在很短的时间范围内进行预测。使用人工神经网络和分形时间序列的替代模型在长期预测中具有更好的结果,但仍不适用于所有情况。本文结合人工神经网络的特征和分形时间序列,建立了分形神经网络。当单元分解成其组成部分时,分形呈现出重复的模式。这种相似性属性用于创建可分解为单独的较小神经网络的分形神经网络。分形图案的重复性质表明,可以用分形神经网络有效地建模表现出重复图案的现象。构造了分形时间序列,人工神经网络和分形神经网络的计算机模型,并将其用于分析和预测德国马克与美元之间以及美元与英镑之间的汇率。结果证实,1994年至1995年的汇率呈分形模式。构造了三层人工神经网络和分形神经网络,对1994年的数据进行了训练,并用于预测1995年上半年的汇率。分形神经计算出的汇率变化方向的正确预测数每周的Deutschemark以及每日和每周的英镑汇率超出了人工神经网络产生的网络。当将预测值与实际值进行比较并用于形成投资策略时,分形网络始终会产生超过人工神经网络的利润。

著录项

  • 作者

    Swisshelm Beverly A.;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号