首页> 外文OA文献 >Alpha-Stable Distribution and Multifractal Detrended Fluctuation Analysis-Based Fault Diagnosis Method Application for Axle Box Bearings
【2h】

Alpha-Stable Distribution and Multifractal Detrended Fluctuation Analysis-Based Fault Diagnosis Method Application for Axle Box Bearings

机译:基于Alpha-稳定的分布和多重反应波动分析的轴箱轴承的故障诊断方法应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A railway vehicle’s key components, such as wheelset treads and axle box bearings, often suffer from fatigue failures. If these faults are not detected and dealt with in time, the running safety of the railway vehicle will be seriously affected. To detect these components’ early failure and extend their fatigue life, a regular maintenance becomes critical. Currently, the regular maintenance of axle box bearings mainly depends on manual off-line inspection, which has low working efficiency and precision of fault diagnosis. In order to improve the maintenance efficiency and effectiveness of railway vehicles, this study proposes a method of integrating the vibration monitoring system of the axle box bearing in the underfloor wheelset lathe, where the integration scheme and work flow of the system are introduced followed by the detailed fault diagnosis method and application examples. Firstly, the band-pass filter and envelope analysis is successively performed on the original signal acquired by an accelerometer. Secondly, the alpha-stable distribution (ASD) and multifractal detrended fluctuation analysis (MFDFA) analysis of the envelope signal are performed, and five characteristic parameters with significant stability and sensitivity are extracted and then brought into the least squares support vectors machine based on particle swarm optimization to determine the state of the bearing quantitatively. Finally, the effectiveness of the method is validated by bench test data. The results demonstrated that the proposed method can accomplish effective diagnosis of axle box bearings’ fault location and fault degree and can yield better diagnosis accuracy than the single method of ASD or MFDFA.
机译:一种铁路车辆的主要部件,如轮胎​​面和轴箱轴承,经常从疲劳失效受到影响。如果没有检测到这些故障并及时处理,铁路车辆的行驶安全性将受到严重影响。为了检测这些组件的早期失效并延长其疲劳寿命,定期的维护变得至关重要。目前,轴箱轴承定期维护主要取决于手动离线检查,其具有低工作效率和故障诊断的精度。为了改善维护效率及铁路车辆的有效性,本研究提出在地板下轴箱轴承的振动监测系统整合的方法轮车床,其中,所述系统的集成方案和工作流程被引入随后详细的故障诊断方法和应用实例。首先,带通滤波器和包络分析由加速度计获取的原始信号被连续地执行。其次,包络线信号的α稳定分布(ASD)和多重去趋势波动分析(MFDFA)分析被执行,并与显著稳定性和敏感度五个特征参数提取,然后带入最小二乘支持基于粒子向量机群优化,以确定轴承的状态定量。最后,该方法的有效性是通过台架试验数据验证。结果表明,所提出的方法可以完成轴箱轴承的故障定位和故障程度的有效的诊断,并且可以产生更好的诊断精度高于ASD或MFDFA的单一方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号