首页> 外文OA文献 >Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: Comparison study with detrended fluctuation analysis and wavelet leaders
【2h】

Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: Comparison study with detrended fluctuation analysis and wavelet leaders

机译:具有缩放统计数据的时间序列的任意命令Hilbert光谱分析:对措施波动分析和小波领导的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present an extended version of Hilbert-Huang transform,namely arbitrary-order Hilbert spectral analysis, to characterize thescale-invariant properties of a time series directly in an amplitude-frequencyspace. We first show numerically that due to a nonlinear distortion,traditional methods require high-order harmonic components to representnonlinear processes, except for the Hilbert-based method. This will lead to anartificial energy flux from the low-frequency (large scale) to thehigh-frequency (small scale) part. Thus the power law, if it exists, iscontaminated. We then compare the Hilbert method with structure functions (SF),detrended fluctuation analysis (DFA), and wavelet leader (WL) by analyzingfractional Brownian motion and synthesized multifractal time series. For theformer simulation, we find that all methods provide comparable results. For thelatter simulation, we perform simulations with an intermittent parameter {mu}= 0.15. We find that the SF underestimates scaling exponent when q > 3. TheHilbert method provides a slight underestimation when q > 5. However, both DFAand WL overestimate the scaling exponents when q > 5. It seems that Hilbert andDFA methods provide better singularity spectra than SF and WL. We finally applyall methods to a passive scalar (temperature) data obtained from a jetexperiment with a Taylor's microscale Reynolds number Relambda simeq 250. Dueto the presence of strong ramp-cliff structures, the SF fails to detect thepower law behavior. For the traditional method, the ramp-cliff structure causesa serious artificial energy flux from the low-frequency (large scale) to thehigh-frequency (small scale) part. Thus DFA and WL underestimate the scalingexponents. However, the Hilbert method provides scaling exponents{xi}{heta}(q) quite close to the one for longitudinal velocity.
机译:在本文中,我们展示了Hilbert-Huang变换的扩展版本,即任意订单Hilbert谱分析,以表征直接在振幅频率中的时间序列的不变性属性。我们首先在数值上显示,由于非线性失真,传统方法需要高阶谐波元件以表示为数字过程,除了基于希尔伯特的方法。这将导致从低频(大规模)到高频(小规模)部分的朴素的能量通量。因此,如果存在,则权力法被污染。然后,我们通过分析褐色棕色运动和合成的多分术时间序列,将Hilbert方法与结构功能(SF),减去波动分析(DFA)和小波领导(WL)进行比较。对于成形器仿真,我们发现所有方法都提供了可比的结果。对于仿真,我们使用间歇参数{ mu} = 0.15进行仿真。我们发现,当Q> 3时,SF低估了缩放指数。然而,当Q> 5时,DFA和WL在Q> 5时估计缩放指数。似乎希尔伯特和DFA方法似乎比SF提供更好的奇点光谱和wl。我们终于将方法应用于从泰勒的微观雷诺数Relambda Simeq 250中获得的被动标量(温度)数据.Dueto存在强大的斜坡悬崖结构的存在,SF不能检测到动力行为。对于传统方法,斜坡悬崖结构使得从低频(大规模)到高频(小规模)部分的严重人工能量通量。因此,DFA和WL低估了ScalingExponents。然而,Hilbert方法提供缩放指数{ xi} { theta}(q)非常接近纵向速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号