首页> 外文OA文献 >Fully Connected Neural Networks Ensemble with Signal Strength Clustering for Indoor Localization in Wireless Sensor Networks
【2h】

Fully Connected Neural Networks Ensemble with Signal Strength Clustering for Indoor Localization in Wireless Sensor Networks

机译:完全连接的神经网络与信号强度聚类集合,无线传感器网络中的室内定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper introduces a method which improves localization accuracy of the signal strength fingerprinting approach. According to the proposed method, entire localization area is divided into regions by clustering the fingerprint database. For each region a prototype of the received signal strength is determined and a dedicated artificial neural network (ANN) is trained by using only those fingerprints that belong to this region (cluster). Final estimation of the location is obtained by fusion of the coordinates delivered by selected ANNs. Sensor nodes have to store only the signal strength prototypes and synaptic weights of the ANNs in order to estimate their locations. This approach significantly reduces the amount of memory required to store a received signal strength map. Various ANN topologies were considered in this study. Improvement of the localization accuracy as well as speedup of learning process was achieved by employing fully connected neural networks. The proposed method was verified and compared against state-of-the-art localization approaches in real world indoor environment by using both stationary and mobile sensor nodes.
机译:本文介绍了一种提高信号强度指纹识别方法的定位精度的方法。根据所提出的方法,通过聚类指纹数据库将整个本地化区域分成区域。对于每个区域,确定所接收信号强度的原型,并且通过仅使用属于该区域的那些指纹(簇)训练专用人工神经网络(ANN)。通过融合所选择的ANNS递送的坐标来获得该位置的最终估计。传感器节点必须仅存储ANN的信号强度原型和突触权重,以估计其位置。这种方法显着降低存储接收信号强度图所需的内存量。本研究考虑了各种ANN拓扑。通过采用完全连接的神经网络实现了本地化准确性的提高以及学习过程的加速。通过使用静止和移动传感器节点来验证所提出的方法并与现实世界室内环境中的最新定位方法进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号